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Background

@ Few-shot learning relates to solving a task with only few training samples, e.g., training a
multi-class classifier with only one image for each class in the training dataset.

@ Meta-learning tackles this problem by gathering similar tasks instead of more samples
from the same task.

@ We propose one setting, meta sparse regression, and provide theoretical guarantee on
few-shot learning under this setting using our proposed method. Our proof uses
Primal-Dual Witness scheme!.
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Problem Setting

The dataset contains samples from multiple tasks, and is generated as follows:
yt,,_j:Xt—,,:j(w*—i_At,)—i_et,,Ja I:177T+11J:177l (1)

where, t; indicates the i-th task (solving t71.1 is our final goal), w* € RP is a constant across
all tasks, and A} € RP is the individual parameter for each task.

Few-shot learning is the setting with small sample size / and large number of tasks T.

Our key assumptions: (SGp(-) is a sub-Gaussian distribution of p-dimensional random vectors.)
Q@ A} ~ 5Gy(02). €j ~ SGi(0?). Xy, j ~ SGp(02). They are mutually independent and
can come from different distributions for different tasks.
Q@ S = Supp(w* + A}), and S = Supp(w*). S5; C S, |S| = k.
© The mixture distribution of covariates of all tasks satisfies the mutual incoherence
condition, i.e., |[|Zsc.s(Zs.5) loo <1—7,7 € (0,1].
Q X;sand AI,-,S are rotation invariant (only used for matching minimax optimal rates.)
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Our Method

First, we determine the common support S over the prior tasks {¢t;j|i = 1,2,---, T} by the
support of W formally introduced below, i.e., S = Supp(w), where

T /
1
)= 57 2D vy = X w3,
2T 4~ 4
2.2 2)
w = arg min {{(w) + Al|w||1}

Second, we use the support § as a constraint for recovering the parameters of the novel task
tr+1. Thatis

Cria(w 2IZ||}/tT+1J tT+1,JW||27

Wrir = argmin {{ri1(w)+ Ary1|wl1}
w,Supp(w)CS
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Main results

Theorem (recovering the common support S)

Let W be the solution of the optimization problem (2). Under assumptions Al, A2, A3, if

| — k
A€EQ (max (O'GO'X, max(ax,ai)aA\/;) og(/;_/))

and T € Q(klog(p — k)/I), with probability greater than 1 — ciexp(—cz log(p — k)), we have
that

© the support of W is contained within S (i.e., S(W) C S);

@ [W— ww < csvVk\  without assumption A4
= c3A with assumption A4
where ci, ¢z, c3 are constants.

If |[W—w*||o € O(1), we have S = S(W) since S C S(w).
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Main results

Theorem (the lower bound of sample complexity)

Let © :={0 = (W7AfT+1)|W € {0,1}7, |lwllo = &, Ay € Wy =L SUPP(Afi) c
Supp(w), |w+ Ayllo = ki}. Furthermore, assume that 0" = (w*, A}, ) is chosen uniformly
at random from ©. We have:

log2+ ¢ - TI+cf - Ir41
log |©|

P[0 # 6*] > 1 —

where c{, cj are constants.

Here |©]| = Q ((’Z)( K )) = Q(pkkkT+).

kT41
Therefore, if Te o(klogp/l) and IT41€ o(kt41 log k), then any algorithm will fail to recover
the true parameter very likely.
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Comparison on rates of sample size per task /

Table 1: Comparison among Our Method versus Different Multi-task Learning Methods.

Method Rate of / for support recovery

(Ours) 44 O(1) (only to recover the common support)
(3) 1+ l100  O(max(klog(pT),kT(T + log p)))
C)fie  O(max(k, T)(T +logp))

(*) l12 O(max(k log(p — k), T log k))

2Ali Jalali et al. “A dirty model for multi-task learning”. In: Advances in neural information processing
systems. 2010, pp. 964-972.

3Sahand N Negahban and Martin J Wainwright. “Simultaneous Support Recovery in High Dimensions:
Benefits and Perils of Block ¢1/{--Regularization”. In: IEEE Transactions on Information Theory 57.6 (2011),
pp. 3841-3863.

*Guillaume Obozinski, Martin J Wainwright, Michael | Jordan, et al. “Support union recovery in
high-dimensional multivariate regression”. In: The Annals of Statistics 39.1 (2011), pp. 1-47.
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Simulations
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Figure 1: Simulations for Theorem 1 on the Probability of Exact Support Recovery with

A= \/k log(p — k)/(TI). Left: Probability of exact support recovery for different number of tasks

under various settings of /. We can see that P(§ = S) depends on C but not on /, i.e., few-shot learning

setting. Right: Our method outperforms multi-task methods especially when T is large (5 := U,T:1 5i)
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Real-world experiments
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Figure 2: Results on the Single-Cell Gene Expression Dataset. Left: The mean square error (MSE) of
prediction on the new task. Right: The size of the estimated common support § When [ is small, our
method has lower MSE and comparable |S] to others, which suggests that our S is more accurate.
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