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Problem in Deep Learning
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Moravec's Paradox

* High-level reasoning requires very little computation,
but low-level sensorimotor skills
require enormous computational resources.
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Few-shot learning (1-shot 5-way)




Games vs. Real world
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Models In Few-shot learning
* Model based

* Meta-learning with memory-augmented neural networks

* Meta-Learning with Temporal Convolutions 111
* Learning to reinforcement learn T
* RIZ Fast reinforcement learning via slow RL Hdds
. T
* Metric based R

* Siamese neural networks for one-shot image recognition
* Matching networks for one shot learning

* Prototypical networks for few-shot learning

* Learning to compare: Relation network for few-shot learning

» Optimization based . a R 8 .
* Learning to learn by gradient descent T LT, LT
d Y9 _ _ T

by gradient descent P e | |

Optimization as a model for few-shot learning
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Task-agnostic meta-learning for few-shot learning ’



Model-Agnostic Meta-Learning

* How to use pretrained model:
* Fine-tune (by gradient descent)

0 60— aVyLyrain(d)
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* Easy to fine-tune for any tasks .

* A meta loss function 01 03
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Model-Agnostic Meta-Learning

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, [3: step size hyperparameters
1: randomly initialize
2: while not done do

3:  Sample batch of tasks 7; ~ p(T) — meta-learning
4:  for all 7; do 6 learning/adaptation
G Evaluate VL7 (fg) with respect to K examples VL.
6 Compute adapted parameters with gradient de- 3
scent: 0, = 0 — aVoLr (fo) N La

. *
7:  end for VL, 6’3
8: Update 6 < 0 — Vo> 7 L7:(fo;)
9: end while . ,

01 03
mm § : Ltest Oév@Ltrazn(e))
task 1
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MAML applications (regression)

The regressor is a neural network model
with 2 hidden layers of size 40 with ReLU nonlinearities.
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MAMVL applications (regression)

The regressor is a neural network model
with 2 hidden layers of size 40 with ReLU nonlinearities.

k-shot regression, k=10
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§ ' - a- pretrained, step=0.02
o 2 --x- oracle
5 e
S B
=
oy
7]
C
@
)
E X
00 £ eriiey o Poiin e il nres q Wi v e Yoo Wiereis N
0 1 2 3 4 5 6 7 8 9
number of gradient steps

Figure 3. Quantitative sinusoid regression results showing the
learning curve at meta test-time. Note that MAML continues to
improve with additional gradient steps without overfitting to the
extremely small dataset during meta-testing, achieving a loss that
is substantially lower than the baseline fine-tuning approach.
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MAML for Image Classitication

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: «, (3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)
4:  forall 7; do
3 Sample K datapoints D = {x), y9)} from T;
6: Evaluate VoL, (fo) using D and L7, in Equation (2)
or (3)
i Compute adapted parameters with gradient descent:
0; =60 — aVoLr,(fo)
8: Sample datapoints D) = {x),y9} from 7T; for the
meta-update
9:  end for
10: ~ Update & < 0 — BV > 1) LT (for) using each D;
and L7, in Equation 2 or 3 |
11: end while




MAML applications (minilmageNet)

https://github.com/y2l/mini-imagenet-tools

64 training classes, 12 validation classes, and 24 test classes.
Follow the experimental protocol proposed by Vinyals et al. (2016),
which involves fast learning of N-way classification with K (1 or 5) shots.

Select N unseen classes,
provide the model with K different instances of each of the N classes,
evaluate the model’s ability to classify new instances within the N classes.

5-way Accuracy

Minilmagenet (Ravi & Larochelle, 2017) 1-shot 5-shot

fine-tuning baseline 28.86 +0.54% | 49.79 +£0.79%
nearest neighbor baseline 41.08 + 0.70% 51.04 + 0.65%
matching nets (Vinyals et al., 2016) 43.56 + 0.84% 55.31 +0.73%
meta-learner LSTM (Ravi & Larochelle, 2017) | 43.44 4+ 0.77% 60.60 £+ 0.71%
MAML, first order approx. (ours) 48.07 £1.75% | 63.15 +£0.91%
MAML (ours) 48.70 +1.84% | 63.11 £ 0.92% iy
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AML applications (Omniglot)

https://github.com/brendenlake/omniglot
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S-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% — —
MAML, no conv (ours) 89.7+1.1% | 97.5 £ 0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7+0.4% | 99.9+0.1% | 95.8+0.3% | 98.9 + 0.2%
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https://github.com/brendenlake/omniglot

MAML for Reinforcement Learning

Algorithm 3 MAML for Reinforcement Learning

Require: p(7): distribution over tasks
Require: «, [3: step size hyperparameters
I: randomly initialize 6
2: while not done do
3:  Sample batch of tasks T; ~ p(7T)
4. forall 7; do
5: Sample K trajectories D = {(x1, a1, ...Xg)} using fy

in 7;

6: Evaluate Vo L7, (fo) using D and L7, in Equation 4

i Compute adapted parameters with gradient descent:
0; = 0 —aVeLr,(fo)

8: Sample trajectories D; = {(x1,a1,...xm)} using for
in 7; |

9:  end for

10:  Update & < 0 — BV D> - 1) £7:(for) using each D;
and L7, in Equation 4
11: end while
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MAML applications (RL locomotion)

https://github.com/rll/rllab

https://sites.google.com/view/maml
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https://github.com/rll/rllab
https://sites.google.com/view/maml

Meta-Learning and Universality

https://arxiv.org/pdf/1710.11622.pdf

* For a sufficiently deep learner model, MAML has the
same theoretical representational power as recurrent
meta-learners.

* Universal function approximation (UFA) theorem

* A neural network with one hidden layer of finite width
can approximate any continuous function on compact
subsets of R™ up to arbitrary precision.

« UFA with input (D,x™) and output y*.
* D is training dataset, (x*,y") is test input and desired output.


https://arxiv.org/pdf/1710.11622.pdf

Meta-Learning and Universality

* First (Model based)

* Meta-learning with memory-augmented neural networks
* RI% Fast reinforcement learning via slow RL

* Learning to reinforcement learn

* A simple neural attentive meta-learner

y' =9(D7,x"0) = 9(X,¥)1, - (X, ¥) K, X7 0)

* Second (Optimization based)
* Learning to optimize neural nets.
* Optimization as a model for few-shot learning
* Hypernetworks.
* Learning to learn by gradient descent
by gradient descent

y* = f(x": 9%) = f(x559(D73;9)) = fF(x";9((%,¥)1:Kx; 9))

19



Meta-Learning and Universality

* MAML
y* = fmamL(Dr1,%x*;0)

K
= f(x*;05) = f(x*;0 — aVeL(DT,0)) = f (x*; = We% >~ Blrw; s 9)))
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Figure 1: A deep fully-connected neural network with N+2 laykrs and ReLU nonlinearities. With this generic
fully connected network, we prove that, with a single step of gradient descent, the model can approximate any
function of the dataset and test input.

20



Meta-Learning and Universality

Task-conditioned, fixed parameter count MAML, fixed parameter count

3
number of hidden layers number of hidden layers

Figure 5: Comparison of depth while keeping the number of parameters con-
stant. Task-conditioned models do not need more than one hidden layer,
whereas meta-learning with MAML clearly benefits from additional depth.
Error bars show standard deviation over three training runs.
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Meta-Learning and Universality

* MAML can be further improved from additional gradient steps.

sine, in-distribution, A€ [0.1,5.0], y€ [0, r] sine, phase extrapolation, y € [n, 2nr]
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Figure 2: The effect of additional gradient steps at test time when attempting to solve new tasks. The MAML
model, trained with 5 inner gradient steps, can further improve with more steps. All methods are provided with
the same data — 5 examples — where each gradient step is computed using the same 5 datapoints.

* MAML Initialization s substantially better suited for extrapolation
beyond the distribution of tasks seen at meta-training time.
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Figure 3: Learning performance on out-of-distribution tasks as a function of the task variability. Recurrent
meta-learners such as SNAIL and MetaNet acquire learning strategies that are less generalizable than those

learned with gradient-based meta-learning. 22



Recasting gradient-pbased meta-
earning as hierarchical Bayes

https://arxiv.org/pdf/1801.08930.pdf

* MAML objective in a Maximum Likelihood setting:
L(0) = %Z [%Z—logp(xjmrm | O_QVQ%Z_Ing(Xjn |9))}

. m n

N 7

®;
* MAML as Hierarchical Bayesian Inference:
VQ/> d)j
0 H{; logp(xfjn | G)Jﬁlogp(xmm | &; )}*' —logp(X[0) 4 _
pr, (%) ”‘JI(
A J)
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https://arxiv.org/pdf/1801.08930.pdf

Recasting gradient-pbased meta-
earning as hierarchical Bayes

Algorithm MAML-HB (Z)
Initialize @ randomly

while not converged do
Draw J samples T1,...,7; ~ py(T)
Estimate EXNPTl x)[—logp(x|0)],..., ]EXNpTJ x)[—logp(x | @)] using ML—- - -
Update 6 <— 0 — 3 Vg > . EXNij x)[—logp(x | 6)]

end

Algorithm 2: Model-agnostic meta-learning as hierarchical Bayesian inference. The choices of the subrou-
tine ML—- - - that we consider are defined in Subroutine 3 and Subroutine 4.

Subroutine ML-POINT (0, 7)
Draw N samples X1, ...,Xy ~ pr(X)

Initialize ¢ < 0
forkinl,..., K do
| Update ¢ <— ¢+ aV,logp(xy,...,xN | @)

end
Draw M samples Xy 1, ..., Xnyp ~ D7(X)
return —logp(Xyi1,---, XN | @)

Subroutine 3: Subroutine for computing a point estimate qAS using truncated gradient descent to approximate
the marginal negative log likelihood (NLL).



Recasting gradient-pbased meta-
earning as hierarchical Bayes

— 1y —aV [ — Xol?
Dy = Dr—1) o |y ¢H2L:¢(k_l)

= Pr—1) — aX® (Xor-1) — ) 4)

for iteration index k and learning rate o € R™. Santos (1996) shows that, starting from ¢y = 0,
@ (1) in (4) solves the regularized linear least squares problem

min (|ly - X¢[13 + 16 - ll3) (5)

p(¢|X,y,0)xN(y; Xo,I) N(¢; 6,Q)

U(p) = —logp(x;...,xy | ¢)
Up) ~ U(P) =1l — @"|I5y-1 + L") H=V_/(¢")

D) = Pe—1) — BV g (1))
min (|6 — 6" 3+ + lbo) — ¢lI3)



Recasting gradient-pbased meta-
earning as hierarchical Bayes

* Laplace approximation

(%] [

2 (X;16;)0(6;10) 40, ~p(X;16])p (65 | 0) det(H,/2m)°
H; = Vg, [-logp (X; | ¢;)] + Vg, [~logp (¢; [ 0)]

_logp (X | 0)~ Z [—logp (Xj | Jsj) —1ogp(q§j | 0) I %logdet(Hj)]

Subroutine ML-LAPLACE (0, 7)
Draw N samples x, . . ., xy ~ pr(x)
Initialize ¢ <+ 0

end

Draw M samples Xy, 1, - ., XNim ~ Pr(x)

Estimate quadratic curvature H

return — logp(Xn41,-- -, Xyom | @)+ nlogdet(H)

Subroutine 4: Subroutine for computing a Laplace approximation of the marginal likelihood.



Recasting gradient-pbased meta-
earning as hierarchical Bayes

Algorithm MAML-HB (Z)

Initialize @ randomly

while not converged do
Draw J samples 71,...,7; ~ py(T)

Estimate EXNPTl x)[—logp(x|0)],..., ]EXNpTJ x)[—logp(x | @)] using ML - -
Update @ < 0 — 3 Vg Zj EXNij (x)[— logp(x|6)]

end

Algorithm 2: Model-agnostic meta-learning as hierarchical Bayesian inference. The choices of the subrou-
tine ML—- - - that we consider are defined in Subroutine 3 and Subroutine 4.

Subroutine ML.-LAPLACE (6, 7)
Draw N samples X;, ..., Xy ~ pr(x)
Initialize ¢ < 0
forkinl,..., K do
| Update ¢ <+~ ¢ +aV,logp(xy,...,Xy | @)
end
Draw M samples Xy 1, ..., Xnrm ~ P7(X)
Estimate quadratic curvature H

return —logp(Xn_11,-- - Xn1ar | @) + nlog det(H)

Subroutine 4: Subroutine for computing a Laplace approximation of the marginal likelihood.



Probabilistic MAML

p(y

https://arxiv.org/pdf/1806.02817.pdf

teSt’XZ 7yz’ test) — p< test‘xtest’ ¢7,> (¢z|xz ,yZ’ )d¢z ~ p(ytest|xtest QS:)

log p(y x5, x5, yY) > Egeg, [1og p(y x5S, ¢7) + log p(0)] + H(gy (0%, yi™

gy (1%, y ) = N (o + vV 1og p(y¥ x5, o) vg)

Algorithm 1 Meta-training, differences from MAML in red

Require: p(7): dlstrlbutlon over tasks

10:
11:

12:

1
2
3
4
5:
6.
7
8
9

initialize © := {9, 05, Ve, Yp>Yq }
while not done do
Sample batch of tasks 7; ~ p(T)
for all 7; do
Dlr, Dlest — 7:
Evaluate V., L(pg, D)
Sample 6 ~ ¢ = N (o — gV o L(po, D), vq)
Evaluate Vo L(6, D")
Compute adapted parameters with gradient descent:
¢i =60-— OZVQ;C(O,'DU.)
Let p(0|D") = N (po — ¥p Ve L(po, D), 05))
Compute Ve ( >, L(#i, DY)
+Dx(q(0/D*) || p(6]D")))
Update © using Adam

Algorithm 2 Meta-testing

Require: training data DY for new task 7
Require: learned ©
1: Sample 6 from the prior p(6|D")
2: Evaluate Vo L(6,D")
3: Compute adapted parameters with gra-
dient descent:
¢i =0 — aVeL(0,D")

28
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https://arxiv.org/pdf/1806.02817.pdf

Future topics

* Training
* How many meta-samples (tasks) do we need for
meta-learning?
* What If some meta-samples are wrong?

* Testing
* How many samples do we need for a new task?
* What if we know the new task beforehand?

* Can we get better robustness and less uncertainty by
meta-learning?

* Model
* What should a good meta-loss function be like?
* How to measure, store and use the meta-knowledge?
* How to Incorporate tasks on different domains?



