Meta-learning

Zhanyu Wang

Problem in Deep Learning

Source: https://arxiv.org/pdf/1605.07678.pdf

Source: https://medium.com/zylapp/ review-of-deep-learning-algorithmsfor-image-classification-5fdbca4a05e2

Moravec's Paradox

• High-level reasoning requires very little computation, but low-level sensorimotor skills require **enormous** computational resources.

Task-changing Online-learning

Learning from small data

Learning from other tasks

Few-shot learning (1-shot 5-way)

Games vs. Real world

FIFA World Cup 2018

GTA 5

Models in Few-shot learning

- Model based
 - Meta-learning with memory-augmented neural networks
 - Meta-Learning with Temporal Convolutions Predicted Labels
 - Learning to reinforcement learn
 - RI²: Fast reinforcement learning via slow RL
- Metric based
 - Siamese neural networks for one-shot image recognition
 - Matching networks for one shot learning
 - Prototypical networks for few-shot learning
 - Learning to compare: Relation network for few-shot learning
- Optimization based
 - Learning to learn by gradient descent by gradient descent

- Optimization as a model for few-shot learning
- Learning to Learn: Meta-Critic Networks for Sample Efficient Learning

Optimizer

- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
- Task-agnostic meta-learning for few-shot learning

Model-Agnostic Meta-Learning

- How to use pretrained model:
 - Fine-tune (by gradient descent)

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} L_{train}(\theta)$$

- What is our goal:
 - Easy to fine-tune for any tasks
 - A meta loss function

$$\min_{\theta} \sum_{\text{task } i} L^{i}_{test}(\theta - \alpha \nabla_{\theta} L^{i}_{train}(\theta))$$

meta-learning

learning/adaptation

Model-Agnostic Meta-Learning

$$\min_{\theta} \sum_{\text{task } i} L^{i}_{test}(\theta - \alpha \nabla_{\theta} L^{i}_{train}(\theta))$$

MAML applications (regression)

11

MAML applications (regression)

The regressor is a neural network model with 2 hidden layers of size 40 with ReLU nonlinearities.

Figure 3. Quantitative sinusoid regression results showing the learning curve at meta test-time. Note that MAML continues to improve with additional gradient steps without overfitting to the extremely small dataset during meta-testing, achieving a loss that is substantially lower than the baseline fine-tuning approach.

MAML for Image Classification

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters 1: randomly initialize θ 2: while not done do Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3: 4: for all \mathcal{T}_i do Sample K datapoints $\mathcal{D} = {\mathbf{x}^{(j)}, \mathbf{y}^{(j)}}$ from \mathcal{T}_i 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) 6: or (3)7: Compute adapted parameters with gradient descent: $\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$ Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the 8: meta-update end for 9: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i 10:and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3 11: end while

MAML applications (minilmageNet)

https://github.com/y2l/mini-imagenet-tools

64 training classes, 12 validation classes, and 24 test classes.

Follow the experimental protocol proposed by Vinyals et al. (2016), which involves fast learning of N-way classification with K (1 or 5) shots.

Select N unseen classes,

provide the model with K different instances of each of the N classes, evaluate the model's ability to classify new instances within the N classes.

	5-way A	Accuracy
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML, first order approx. (ours)	$48.07 \pm \mathbf{1.75\%}$	$63.15 \pm 0.91\%$
MAML (ours)	$48.70 \pm \mathbf{1.84\%}$	$63.11 \pm \mathbf{0.92\%}$

MAML applications (Omniglot)

https://github.com/brendenlake/omniglot

q	X	<u>م</u>	Ľ	olo	ŤÅ	1	h	Ă	Ч	Ϋ́	Ð	5	Ĭ	ς	1	L	0	1	VT	و	و	٤	J.	ዮ	θ	æ	Z	ስ	2	坺	€	ኇ	ぷ	Ħ
ራ	U	2	S	ملی	71	出	Щ	ŗ	۲	加	R	R	B	Ъ	\square	K	\checkmark	C	7	V	Ĵ	2	3	J	z	υ	N	k	ナ	Э	ᠳᡛᢇ	Ð	90	V
2	3	5	3	Ĩ	μ	Η	М	7	Ι	fr	N.	8	S	91	Y	\subseteq	ſ	Ц	\Box	5	S	C	G	71	f	υ	l	n	\bigcirc	R	ጭ	ኤ	ጜ	ඳ
प्रे	च	ਇ	B	ਸ਼	ಋ	ຽ	ക്	63	も	⊐	┲	匚	氲	r	m	ഊ	ര	2]	ß	8	ę	Ш	۵	L	无	£	\mathcal{L}	2	75	Ž	н	Ш	3	Ч
ਭ	B	ਝ	G	य्तुं	ഡ	ಪ	ພ	1	00							~			~		-			-	٦	5	Ĵ	7	7	S	В	κ	\mathbb{V}	Х
ਟ	ਦ	bl	ੳ	ਈ	ದ	ມ	در لائ	ą	20		1S1	ta	nc	:es	5 C	DŤ	16	52	3 (ch	a	ra	cte	er	S	そ	Σ	∇	ዀ	Z	Ч	8	Б	ћ
ନ	Ο	G	ଷ	ଟା	φ	ζ	ى		frc	on	า 5	50	d	iff	er	e	nt	al	pł	าล	b	et:	S			r	、	I۲	/	Л	Ĵ	·){	(•)	Ľ.
ମ	21	ଘ	ଟ	ଝ	ら)	0	\langle	,		WI	U	ف	L.	щ	τ	υ	р.	(0	אי	1	- 4	R)	.,	7	D	$\dot{\sim}$	신기	\bigcirc	N	<u>.</u>	<u>):</u>	Śi
ଇ୍	ତ	V	F	ନ୍ତ	9	კ	Я	öL	B	π	Ve	47	A	2	U	ג	ę	\mathcal{D}	4	2	5	য্য	5	5	1	/	IJ	7	\checkmark	સિ	ſi	J	·ſ·	÷
ր	ሯ	ե	F	ш	Q	\cap	4	þ	h	22	vers	201	R	m	उर्	ব	ভ	3	হা	é .		•	۰.	1	Ν	Ч	Э	П	д	፞ጛ	\sim	日	5	0
ደ	9	ր	n	น	ዑ	0.	φ	P	4	್ರಾ	ı	3	22	SUV	ই	স	2	Р	ব		.:	• • •	•••	• d 6	Ц	φ	γ	Я	Κ	4	φ	4	8	I
L		Ч	n	ч	C	J.	Ý	5	7	n	5	2	N	~~	F	ব	R	1eg	B	•••				0 9 6	Ь	H	Þ	ц	С	4	r	5	Ч	丰

	5-way A	ccuracy	20-way A	Accuracy		
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot		
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	—		
MAML, no conv (ours)	$ \hspace{.1cm} 89.7 \pm \mathbf{1.1\%} $	$97.5 \pm \mathbf{0.6\%}$	_	-		
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%		
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%		
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%		
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%		
MAML (ours)	$98.7\pm\mathbf{0.4\%}$	$99.9 \pm \mathbf{0.1\%}$	$95.8 \pm 0.3\%$	$98.9\pm\mathbf{0.2\%}$		

MAML for Reinforcement Learning

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters 1: randomly initialize θ 2: while not done do Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3: for all \mathcal{T}_i do 4: 5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, \dots, \mathbf{x}_H)\}$ using f_{θ} in \mathcal{T}_i Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4 6: 7: Compute adapted parameters with gradient descent: $\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$ Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ..., \mathbf{x}_H)\}$ using $f_{\theta'_i}$ 8: in \mathcal{T}_i 9: end for Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i 10:and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4

11: end while

MAML applications (RL locomotion)

https://github.com/rll/rllab

https://sites.google.com/view/maml

https://arxiv.org/pdf/1710.11622.pdf

- For a sufficiently deep learner model, MAML has the same theoretical representational power as recurrent meta-learners.
- Universal function approximation (UFA) theorem
 - A neural network with one hidden layer of finite width can approximate any continuous function on compact subsets of R^n up to arbitrary precision.
- Universal learning procedure approximator
 - UFA with input (D, x^*) and output y^* .
 - D is training dataset, (x^*, y^*) is test input and desired output.

- First (Model based)
 - Meta-learning with memory-augmented neural networks
 - RI²: Fast reinforcement learning via slow RL
 - Learning to reinforcement learn
 - A simple neural attentive meta-learner

$$\hat{\mathbf{y}}^{\star} = g(\mathcal{D}_{\mathcal{T}}, \mathbf{x}^{\star}; \phi) = g((\mathbf{x}, \mathbf{y})_1, ..., (\mathbf{x}, \mathbf{y})_K, \mathbf{x}^{\star}; \phi)$$

- Second (Optimization based)
 - Learning to optimize neural nets.
 - Optimization as a model for few-shot learning
 - Hypernetworks.
 - Learning to learn by gradient descent

by gradient descent

 $\hat{\mathbf{y}}^{\star} = f(\mathbf{x}^{\star}; \theta_{\mathcal{T}}') = f(\mathbf{x}^{\star}; g(\mathcal{D}_{\mathcal{T}}; \phi)) = f(\mathbf{x}^{\star}; g((\mathbf{x}, \mathbf{y})_{1:K}; \phi))$

- MAML
- $\hat{\mathbf{y}}^{\star} = f_{\text{MAML}}(\mathcal{D}_{\mathcal{T}}, \mathbf{x}^{\star}; \theta)$

$$= f(\mathbf{x}^{\star}; \theta_{\mathcal{T}}') = f(\mathbf{x}^{\star}; \theta - \alpha \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\mathcal{T}}, \theta)) = f\left(\mathbf{x}^{\star}; \theta - \alpha \nabla_{\theta} \frac{1}{K} \sum_{k=1}^{K} \ell(\mathbf{y}_{k}, f(\mathbf{x}_{k}; \theta))\right)$$

Figure 1: A deep fully-connected neural network with N+2 layers and ReLU nonlinearities. With this generic fully connected network, we prove that, with a single step of gradient descent, the model can approximate any function of the dataset and test input.

Figure 5: Comparison of depth while keeping the number of parameters constant. Task-conditioned models do not need more than one hidden layer, whereas meta-learning with MAML clearly benefits from additional depth. Error bars show standard deviation over three training runs.

• MAML can be further improved from additional gradient steps.

Figure 2: The effect of additional gradient steps at test time when attempting to solve new tasks. The MAML model, trained with 5 inner gradient steps, can further improve with more steps. All methods are provided with the same data -5 examples – where each gradient step is computed using the same 5 datapoints.

 MAML initialization is substantially better suited for extrapolation beyond the distribution of tasks seen at meta-training time.

Figure 3: Learning performance on out-of-distribution tasks as a function of the task variability. Recurrent meta-learners such as SNAIL and MetaNet acquire learning strategies that are less generalizable than those learned with gradient-based meta-learning.

https://arxiv.org/pdf/1801.08930.pdf

• MAML objective in a Maximum Likelihood setting:

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{J} \sum_{j} \left[\frac{1}{M} \sum_{m} -\log p\left(\mathbf{x}_{j_{N+m}} \mid \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n} -\log p\left(\mathbf{x}_{j_{n}} \mid \boldsymbol{\theta} \right) \right) \right]_{\boldsymbol{\phi}_{j}}$$

• MAML as Hierarchical Bayesian Inference:

23

A	lgorithm MAML-HB (\mathscr{D})
	Initialize θ randomly
	while not converged do
	Draw J samples $\mathcal{T}_1, \ldots, \mathcal{T}_J \sim p_{\mathscr{D}}(\mathcal{T})$
	Estimate $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{T}_{\mathbf{x}}}(\mathbf{x})}[-\log p(\mathbf{x} \mid \boldsymbol{\theta})], \dots, \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{T}_{\mathbf{x}}}(\mathbf{x})}[-\log p(\mathbf{x} \mid \boldsymbol{\theta})]$ using \mathbb{ML} -···
	Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{-1} \beta \nabla_{\boldsymbol{\theta}} \sum_{j} \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{T}_{i}}(\mathbf{x})} [-\log p(\mathbf{x} \mid \boldsymbol{\theta})]$
	end

Algorithm 2: Model-agnostic meta-learning as hierarchical Bayesian inference. The choices of the subroutine $ML \rightarrow \cdots$ that we consider are defined in Subroutine 3 and Subroutine 4.

```
Subroutine ML-POINT (\boldsymbol{\theta}, \mathcal{T})

Draw N samples \mathbf{x}_1, \dots, \mathbf{x}_N \sim p_{\mathcal{T}}(\mathbf{x})

Initialize \boldsymbol{\phi} \leftarrow \boldsymbol{\theta}

for k in 1, ..., K do

| Update \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \alpha \nabla_{\boldsymbol{\phi}} \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \boldsymbol{\phi})

end

Draw M samples \mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M} \sim p_{\mathcal{T}}(\mathbf{x})

return -\log p(\mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M} \mid \boldsymbol{\phi})
```

Subroutine 3: Subroutine for computing a point estimate $\hat{\phi}$ using truncated gradient descent to approximate the marginal negative log likelihood (NLL).

$$\boldsymbol{\phi}_{(k)} = \boldsymbol{\phi}_{(k-1)} - \alpha \nabla_{\boldsymbol{\phi}} \left[\| \mathbf{y} - \mathbf{X} \boldsymbol{\phi} \|_{2}^{2} \right]_{\boldsymbol{\phi} = \boldsymbol{\phi}_{(k-1)}}$$
$$= \boldsymbol{\phi}_{(k-1)} - \alpha \mathbf{X}^{\mathrm{T}} \left(\mathbf{X} \boldsymbol{\phi}_{(k-1)} - \mathbf{y} \right)$$
(4)

for iteration index k and learning rate $\alpha \in \mathbb{R}^+$. Santos (1996) shows that, starting from $\phi_{(0)} = \theta$, $\phi_{(k)}$ in (4) solves the regularized linear least squares problem

$$\min\left(\|\mathbf{y} - \mathbf{X}\boldsymbol{\phi}\|_{2}^{2} + \|\boldsymbol{\theta} - \boldsymbol{\phi}\|_{\mathbf{Q}}^{2}\right)$$
(5)
$$p\left(\boldsymbol{\phi} \mid \mathbf{X}, \mathbf{y}, \boldsymbol{\theta}\right) \propto \mathcal{N}(\mathbf{y}; \mathbf{X}\boldsymbol{\phi}, \mathbb{I}) \mathcal{N}(\boldsymbol{\phi}; \boldsymbol{\theta}, \mathbf{Q})$$

$$\ell(\boldsymbol{\phi}) = -\log p(\mathbf{x}_1 \dots, \mathbf{x}_N \mid \boldsymbol{\phi})$$

$$\ell(\boldsymbol{\phi}) \approx \tilde{\ell}(\boldsymbol{\phi}) := \frac{1}{2} \|\boldsymbol{\phi} - \boldsymbol{\phi}^*\|_{\mathbf{H}^{-1}}^2 + \ell(\boldsymbol{\phi}^*) \qquad \mathbf{H} = \nabla_{\boldsymbol{\phi}}^2 \,\ell(\boldsymbol{\phi}^*)$$

$$\boldsymbol{\phi}_{(k)} = \boldsymbol{\phi}_{(k-1)} - \mathcal{B} \nabla_{\boldsymbol{\phi}} \, \hat{\ell}(\boldsymbol{\phi}_{(k-1)})$$
$$\min\left(\|\boldsymbol{\phi} - \boldsymbol{\phi}^*\|_{\mathbf{H}^{-1}}^2 + \|\boldsymbol{\phi}_{(0)} - \boldsymbol{\phi}\|_{\mathbf{Q}}^2 \right)$$

Laplace approximation

$$\int p\left(\mathbf{X}_{j} \mid \boldsymbol{\phi}_{j}\right) p\left(\boldsymbol{\phi}_{j} \mid \boldsymbol{\theta}\right) d\boldsymbol{\phi}_{j} \approx p\left(\mathbf{X}_{j} \mid \boldsymbol{\phi}_{j}^{*}\right) p\left(\boldsymbol{\phi}_{j}^{*} \mid \boldsymbol{\theta}\right) \det(\mathbf{H}_{j}/2\pi)^{-\frac{1}{2}}$$
$$\mathbf{H}_{j} = \nabla_{\boldsymbol{\phi}_{j}}^{2} \left[-\log p\left(\mathbf{X}_{j} \mid \boldsymbol{\phi}_{j}\right)\right] + \nabla_{\boldsymbol{\phi}_{j}}^{2} \left[-\log p\left(\boldsymbol{\phi}_{j} \mid \boldsymbol{\theta}\right)\right]$$
$$-\log p\left(\mathbf{X} \mid \boldsymbol{\theta}\right) \approx \sum_{j} \left[-\log p\left(\mathbf{X}_{j} \mid \hat{\boldsymbol{\phi}}_{j}\right) - \log p\left(\hat{\boldsymbol{\phi}}_{j} \mid \boldsymbol{\theta}\right) + \frac{1}{2}\log\det(\mathbf{H}_{j})\right]$$

Subroutine ML-LAPLACE $(\boldsymbol{\theta}, \mathcal{T})$ Draw N samples $\mathbf{x}_1, \dots, \mathbf{x}_N \sim p_{\mathcal{T}}(\mathbf{x})$ Initialize $\boldsymbol{\phi} \leftarrow \boldsymbol{\theta}$ for k in $1, \dots, K$ do | Update $\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \alpha \nabla_{\boldsymbol{\phi}} \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \boldsymbol{\phi})$ end Draw M samples $\mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M} \sim p_{\mathcal{T}}(\mathbf{x})$ Estimate quadratic curvature $\hat{\mathbf{H}}$ return $-\log p(\mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M} \mid \boldsymbol{\phi}) + \eta \log \det(\hat{\mathbf{H}})$

Subroutine 4: Subroutine for computing a Laplace approximation of the marginal likelihood.

A	Algorithm MAML-HB (\mathscr{D})
	Initialize θ randomly
	while not converged do
	Draw J samples $\mathcal{T}_1, \ldots, \mathcal{T}_J \sim p_{\mathscr{D}}(\mathcal{T})$
	Estimate $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{T}_1}(\mathbf{x})}[-\log p(\mathbf{x} \mid \boldsymbol{\theta})], \dots, \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{T}_1}(\mathbf{x})}[-\log p(\mathbf{x} \mid \boldsymbol{\theta})]$ using ML-···
	Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{-1} \beta \nabla_{\boldsymbol{\theta}} \sum_{j} \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{T}_{i}}(\mathbf{x})} [-\log p(\mathbf{x} \mid \boldsymbol{\theta})]$
	end

Algorithm 2: Model-agnostic meta-learning as hierarchical Bayesian inference. The choices of the subroutine $ML \rightarrow \cdots$ that we consider are defined in Subroutine 3 and Subroutine 4.

```
Subroutine ML-LAPLACE (\boldsymbol{\theta}, \mathcal{T})

Draw N samples \mathbf{x}_1, \dots, \mathbf{x}_N \sim p_{\mathcal{T}}(\mathbf{x})

Initialize \boldsymbol{\phi} \leftarrow \boldsymbol{\theta}

for k in 1, \dots, K do

| Update \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \alpha \nabla_{\boldsymbol{\phi}} \log p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \boldsymbol{\phi})

end

Draw M samples \mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M} \sim p_{\mathcal{T}}(\mathbf{x})

Estimate quadratic curvature \hat{\mathbf{H}}

return -\log p(\mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M} \mid \boldsymbol{\phi}) + \eta \log \det(\hat{\mathbf{H}})
```

Subroutine 4: Subroutine for computing a Laplace approximation of the marginal likelihood.

Probabilistic MAML https://arxiv.org/pdf/1806.02817.pdf

 $p(\mathbf{y}_i^{\text{test}} | \mathbf{x}_i^{\text{tr}}, \mathbf{y}_i^{\text{tr}}, \mathbf{x}_i^{\text{test}}) = \int p(\mathbf{y}_i^{\text{test}} | \mathbf{x}_i^{\text{test}}, \phi_i) p(\phi_i | \mathbf{x}_i^{\text{tr}}, \mathbf{y}_i^{\text{tr}}, \theta) d\phi_i \approx p(\mathbf{y}_i^{\text{test}} | \mathbf{x}_i^{\text{test}}, \phi_i^{\star})$

 $\log p(\mathbf{y}_{i}^{\text{test}} | \mathbf{x}_{i}^{\text{test}}, \mathbf{x}_{i}^{\text{tr}}, \mathbf{y}_{i}^{\text{tr}}) \geq E_{\theta \sim q_{\psi}} \left[\log p(\mathbf{y}_{i}^{\text{test}} | \mathbf{x}_{i}^{\text{test}}, \phi_{i}^{\star}) + \log p(\theta) \right] + \mathcal{H}(q_{\psi}(\theta | \mathbf{x}_{i}^{\text{test}}, \mathbf{y}_{i}^{\text{test}}))$ $q_{\psi}(\theta | \mathbf{x}_{i}^{\text{test}}, \mathbf{y}_{i}^{\text{test}}) = \mathcal{N}(\boldsymbol{\mu}_{\theta} + \boldsymbol{\gamma}_{q} \nabla \log p(\mathbf{y}_{i}^{\text{test}} | \mathbf{x}_{i}^{\text{test}}, \boldsymbol{\mu}_{\theta}); \mathbf{v}_{q})$

Algorithm 1 Meta-training, differences from MAML in red

Require: $p(\mathcal{T})$: distribution over tasks 1: initialize $\Theta := \{ \boldsymbol{\mu}_{\theta}, \boldsymbol{\sigma}_{\theta}^2, \mathbf{v}_q, \boldsymbol{\gamma}_p, \boldsymbol{\gamma}_q \}$ 2: while not done do Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3: 4: for all \mathcal{T}_i do $\mathcal{D}^{\mathrm{tr}}, \mathcal{D}^{\mathrm{test}} = \mathcal{T}_i$ 5: Evaluate $\nabla_{\mu_{\theta}} \mathcal{L}(\mu_{\theta}, \mathcal{D}^{\text{test}})$ 6: 7: Sample $\theta \sim q = \mathcal{N}(\boldsymbol{\mu}_{\theta} - \boldsymbol{\gamma}_{q} \nabla_{\boldsymbol{\mu}_{\theta}} \mathcal{L}(\boldsymbol{\mu}_{\theta}, \mathcal{D}^{\text{test}}), \mathbf{v}_{q})$ 8: Evaluate $\nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{tr})$ 9: Compute adapted parameters with gradient descent: $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$ Let $p(\theta | \mathcal{D}^{tr}) = \mathcal{N}(\boldsymbol{\mu}_{\theta} - \boldsymbol{\gamma}_{p} \nabla_{\boldsymbol{\mu}_{\theta}} \mathcal{L}(\boldsymbol{\mu}_{\theta}, \mathcal{D}^{tr}), \boldsymbol{\sigma}_{\theta}^{2}))$ 10: 11: Compute $\nabla_{\Theta} \left(\sum_{\mathcal{T}_i} \mathcal{L}(\phi_i, \mathcal{D}^{\text{test}}) \right)$ $+D_{\mathrm{KL}}(q(\theta|\mathcal{D}^{\mathrm{test}}) || p(\theta|\mathcal{D}^{\mathrm{tr}})))$ 12: Update Θ using Adam

Algorithm 2 Meta-testing

Require: training data $\mathcal{D}_{\mathcal{T}}^{tr}$ for new task \mathcal{T} **Require:** learned Θ

- 1: Sample θ from the prior $p(\theta | \mathcal{D}^{tr})$
- 2: Evaluate $\nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{tr})$
- 3: Compute adapted parameters with gradient descent:

$$\phi_i = \theta - \alpha \nabla_\theta \mathcal{L}(\theta, \mathcal{D}^{\mathrm{u}})$$

Future topics

- Training
 - How many meta-samples (tasks) do we need for meta-learning?
 - What if some meta-samples are wrong?
- Testing
 - How many samples do we need for a new task?
 - What if we know the new task beforehand?
 - Can we get better robustness and less uncertainty by meta-learning?
- Model
 - What should a good meta-loss function be like?
 - How to measure, store and use the meta-knowledge?
 - How to incorporate tasks on different domains?