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Understanding deep learning requires rethinking generalization1

Conventional wisdom: small generalization error either by properties of the model
family, or by the regularization techniques used during fitting.
Experiments show that deep neural networks easily fit random labels.

Even optimization on random labels remains easy. In fact, training time increases
only by a small constant factor compared with training on the true labels.
Randomizing labels is solely a data transformation, leaving all other properties of the
learning problem unchanged.
Neural networks are able to capture the remaining signal in the data, while at the
same time fit the noisy part using brute-force.

Explicit regularization may improve generalization performance, but is neither
necessary nor by itself sufficient for controlling generalization error. (Without
weight decay, dropout, or data augmentation, it can still generalize.)

1ICLR2017 https://arxiv.org/pdf/1611.03530.pdf

https://arxiv.org/pdf/1611.03530.pdf
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Fitting random label is possible and not hard
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Regularizers can help but are not crucial
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Early stopping is needed when other regularizers are absent
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Fitting random labels is still possible under regularization
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Challenge for traditional approaches on reasoning about generalization
Rademacher complexity and VC-dimension

The empirical Rademacher complexity of a hypothesis class H on a dataset
{x1, . . . , xn} is defined as

R̂n(H) = Eσ

[
sup
h∈H

1
n

n∑
i=1

σih(xi)

]
.

where σ1, . . . , σn ∈ −1,+1 are i.i.d. uniform r.v.s.
It measures ability of H to fit random ±1 binary label assignments.
Since many neural networks fit the training set with random labels perfectly, we
expect that R̂n(H) ≈ 1 for the corresponding model class H.

Uniform stability
Uniform stability of an algorithm A measures how sensitive the algorithm is to the
replacement of a single example.
However, it is solely a property of the algorithm, which does not take into account
specifics of the data or the distribution of the labels.
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Classical statistics bounds 2

2ICLR2020 https://arxiv.org/pdf/1912.02178.pdf

https://arxiv.org/pdf/1912.02178.pdf
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Classical statistics bounds
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Classical statistics bounds



Rethinking Generalization Distributional Generalization Local Elasticity

From Classical Statistics to Modern Machine Learning 3

3https://www.youtube.com/watch?v=OBCciGnOJVs

https://www.youtube.com/watch?v=OBCciGnOJVs
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From Classical Statistics to Modern Machine Learning
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From Classical Statistics to Modern Machine Learning
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Label noise in one class (this class is unknown by the given label)4

4https://arxiv.org/pdf/2009.08092.pdf (also check ’Related Work’ in their paper)
https://media.mis.mpg.de/mml/2020-08-21/

https://arxiv.org/pdf/2009.08092.pdf
https://media.mis.mpg.de/mml/2020-08-21/
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Label noise in one class only affects this class
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Label noise in one class only affects this class
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Label noise in each class affects the class locally
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Distributional Generalization on model-distinguishable features
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Feature Calibration
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Constant Calibration
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Neural network is not Bayes Optimal



Rethinking Generalization Distributional Generalization Local Elasticity

Detailed feature calibration between class (confusion matrix)
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Detailed feature calibration inside class
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Model not very good? (Some true labels ⇔ noise): Agreement Property
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Agreement property also exists in other models
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Local Elasticity5 (also known as stiffness6)

5ICLR2020 https://arxiv.org/pdf/1910.06943.pdf
6https://arxiv.org/pdf/1901.09491.pdf

https://arxiv.org/pdf/1910.06943.pdf
https://arxiv.org/pdf/1901.09491.pdf
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Relative similarity and kernelized similarity
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Comparisons between ReLU neural networks and linear neural networks
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Elastic-Locality based clustering
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Locally Elastic Stability7

Definition (Locally Elastic Stability)

An algorithm A has locally elastic stability βm(·, ·) with respect to the loss function l
if, for all m, the inequality

|l(AS, z)− l(AS\i , z)| ≤ βm(zi, z)
holds for all S ∈ Zm, 1 ≤ i ≤ m, and z ∈ Z.

Definition (Uniform Stability)

Let βU
m be a sequence of scalars. An algorithm A has uniform stability βU

m with respect
to the loss function l if

|l(AS, z)− l(AS\i , z)| ≤ βU
m (1)

holds for all S ∈ Zm, 1 ≤ i ≤ m, and z ∈ Z.
7AISTATS 2021? https://arxiv.org/pdf/2010.13988.pdf

https://arxiv.org/pdf/2010.13988.pdf
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Comparisons between ReLU neural networks and linear neural networks
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Comparisons between ReLU neural networks and linear neural networks
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Generalization Bounds
We write ∆(AS) as a shorthand for the defect Ezl(AS, z)−

∑m
j=1 l(AS, zj)/m, where

the expectation Ez is over the randomness embodied in z ∼ D. In particular,
Ezl(AS, z) depends on AS.
Theorem

Let A be an algorithm that has locally elastic stability βm(·, ·) with respect to the loss
function l. Fixing 0 < δ < 1 and η > 0, for sufficiently large m, with probability at
least 1 − δ, we have

∆(AS) ≤
2 supz′∈Z Ezβ(z′, z)

m + 2
(

2 sup
z′∈Z

Ezβ(z′, z) + η + Ml

)√
2 log(2/δ)

m .

Models supz′∈S,z∈Z βm(z′, z) supz′∈Z Ezβm(z′, z) ratio
Linear model 314 40 8

Neural networks 3.05 0.02 153
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Generalization Bounds for SGD
Definition
A randomized algorithm A is βm(·, ·)-locally elastic stable if for all S ∈ Zn, we have

|EA[l(AS, z)]− EA[l(AS\i , z)]| ≤ βm(zi, z),
where the expectation is over the randomness embedded in the algorithm A.

Proposition (Non-convex Optimization)
Assume that the loss function l(·, z) is non-negative and bounded for all z ∈ Z.
Without loss of generality, we assume 0 ≤ l(·, z) ≤ 1. In addition, we assume l(·, z) is
α-smooth and convex for all z ∈ Z. We further assume l(·, z) is L(z)-Lipschitz and
L(z) < ∞ for all z ∈ Z and L = supz∈Z L(z) < ∞. Suppose that we run SGD for T
steps with monotonically non-increasing learning rate ηt ≤ c/t for some constant
c > 0. Then,

|E[l(θ̂T, z)]− E[l(θ̂\i
T , z)]| ≤ γm

(
c(L(zi) + L)L(z)Tαc

) 1
αc+1

,

where γm = (1 + 1/(αc))/(m − 1).
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