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Understanding deep learning requires rethinking generalization®

e Conventional wisdom: small generalization error either by properties of the model
family, or by the regularization techniques used during fitting.
@ Experiments show that deep neural networks easily fit random labels.

e Even optimization on random labels remains easy. In fact, training time increases
only by a small constant factor compared with training on the true labels.

e Randomizing labels is solely a data transformation, leaving all other properties of the
learning problem unchanged.

o Neural networks are able to capture the remaining signal in the data, while at the
same time fit the noisy part using brute-force.

@ Explicit regularization may improve generalization performance, but is neither
necessary nor by itself sufficient for controlling generalization error. (Without
weight decay, dropout, or data augmentation, it can still generalize.)

'ICLR2017 https://arxiv.org/pdf/1611.03530.pdf
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Fitting random label is possible and not hard
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Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.
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Regularizers can help but are not crucial

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
Performance with and without data augmentation and weight decay are compared. The results of
fitting random labels are also included.

model #params randomcrop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 6 yes 100.0 36.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm S no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22
yes no 99.82 79.66
Alexnet 1,387,786 o yes 100.0 7736
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35
MLP 3x512 1,735,178 6 & 100.0 5239

(fitting random labels) no no 100.0 10.48
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Early stopping is needed when other regularizers are absent
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Figure 2: Effects of implicit regularizers on generalization performance. aug is data augmentation,
wd is weight decay, BN is batch normalization. The shaded areas are the cumulative best test ac-
curacy, as an indicator of potential performance gain of early stopping. (a) early stopping could
potentially improve generalization when other regularizers are absent. (b) early stopping is not nec-
essarily helpful on CIFARI10, but batch normalization stablize the training process and improves

generalization.
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Fitting random labels is still possible under regularization

Table 2: The top-1 and top-5 accuracy (in percentage) of the Inception v3 model on the ImageNet
dataset. We compare the training and test accuracy with various regularization turned on and off,
for both true labels and random labels. The original reported top-5 accuracy of the Alexnet on
ILSVRC 2012 is also listed for reference. The numbers in parentheses are the best test accuracy
during training, as a reference for potential performance gain of early stopping.

data weight

aug dropout decay top-1 train  top-5 train top-1 test top-5 test
ImageNet 1000 classes with the original labels

yes yes yes 92.18 99.21 77.84 93.92

yes no no 92.33 99.17 72.95 90.43

no no yes 90.60 100.0 67.18 (72.57) 86.44 (91.31)

no no no 99.53 100.0 59.80 (63.16)  80.38 (84.49)
Alexnet (Krizhevsky et al., 2012) - - - 83.6
ImageNet 1000 classes with random labels

no yes yes 91.18 97.95 0.09 0.49

no no yes 87.81 96.15 0.12 0.50

no no no 95.20 99.14 0:11 0.56
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Challenge for traditional approaches on reasoning about generalization

Rademacher complexity and VC-dimension
@ The empirical Rademacher complexity of a hypothesis class H on a dataset

{x1,...,xn} is defined as
n
RI‘I(H) = EO’ sup — Uih(Xi)
her N
where 01,...,0, € —1,+1 are i.i.d. uniform r.v.s.

@ It measures ability of  to fit random +1 binary label assignments.
@ Since many neural networks fit the training set with random labels perfectly, we
expect that 7%,,(7-[) ~ 1 for the corresponding model class H.
Uniform stability
@ Uniform stability of an algorithm A measures how sensitive the algorithm is to the
replacement of a single example.

@ However, it is solely a property of the algorithm, which does not take into account
specifics of the data or the distribution of the labels.
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Classical statistics bounds 2

C.1 VC-Dimension Based Measures

We start by restating the theorem in (Bartlett et al., 2019) which provides an upper bound on the
VC-dimension of any piece-wise linear network.

Theorem 1 (Bartlett et al. (2019)) Let F be the class of feed-forward networks with a fized
computation graph of depth d and ReLU activations. Let a; and q; be the number of activations and
parameters in layer i. Then VC-dimension of F can be bounded as follows:

d d d
VO(F) <d+ (Z(d —i+ l)qi> log, | 8e Ziai log, | 4e Zjaj
i=1 j=1

i=1

Theorem 2 Given a convolutional network f, for any § > 0, with probability 1 — § over the the

training set:
. dl dn)® S k2¢ici
L< L+4000\/ o3 (6dn) mzlﬂ el \/bgg/‘s) (16)

2|CLR2020 https://arxiv.org/pdf/1912.02178.pdf
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Classical statistics bounds

C.2 (Norm & Margin)-Based Measures

Several generalization bounds have been proved for neural networks using margin and norm notions.
In this section, we go over several such measures. For fully connected networks, Bartlett and
Mendelson (2002) have shown a bound based on product of ¢, norm of the layer weights times a
24 factor where ¢ 1,00 18 the maximum over hidden units of the ¢> norm of the incoming weights to
the hidden unit. Neyshabur et al. (2015b) proved a bound based on product of Frobenius norms of
the layer weights times a 2¢ factor and Golowich et al. (2017) was able to improve the factor to v/d.
Bartlett et al. (2017) proved a bound based on product of spectral norm of the layer weights times
sum over layers of ratio of Frobenius norm to spectral norm of the layer weights and Neyshabur et al.
(2018a) showed a similar bound can be achieved in a simpler way using PAC-bayesian framework.

Spectral Norm Unfortunately, none of the above founds are directly applicable to convolutional

networks. Pitas et al. (2017) built on Neyshabur et al. (2018a) and extended the bound on the
spectral norm to convolutional networks. The bound is very similar to the one for fully connected
networks by Bartlett et al. (2017). We next restate their generalization bound for convolutional

networks including the constants.

Theorem 3 (Pitas et al. (2017)) Let B an upper bound on the {5 norm of any point in the input
domain. For any B,~,d > 0, the following bound holds with probability 1 — § over the training set:

f[w;-well%

2 >
(84B L, kiv/@ + VIn{@2d)) TIy IWill3 Sy eyt = +1n(%)

7*m

L<i,+ (24)
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Classical statistics bounds

C.3 Flatness-based Measures

PAC-Bayesian framework (McAllester, 1999) allows us to study flatness of a solution and connect
it to generalization. Given a prior P is is chosen before observing the training set and a posterior
@ which is a distribution on the solutions of the learning algorithm (and hence depends on the
training set), we can bound the expected generalization error of solutions generated from @ with
high probability based on the KL divergence of P and ). The next theorem states a simplified
version of PAC-Bayesian bounds.

Theorem 4 For any 6 > 0, distribution D, prior P, with probability 1 — & over the training set, for
any posterior Q the following bound holds:

KL(Q||P) + log (%)

2(m —1) el

Eve [L(A)] < Eung [L()] + ¢
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From Classical Statistics to Modern Machine Learning 3

what kind of generalization bound could work here?
0.7 <0*< %) <09
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*https://www.youtube . com/watch?v=0BCciGn0JVs
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From Classical Statistics to Modern Machine Learning
N
» VvC-dimension/Rademacher complexity/covering/mafgin bounds.
cannot deal with interpolated classifiershen Bayes risk is non-zero.
. . L. . . WYSIWYG
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bounds:
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» Algorithmic stal
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—

) ] . oracle bounds
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Most classical analyses do not support interpolation. =— expected loss

»  But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98]) . B
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From Classical Statistics to Modern Machine Learning

Modern ML. Interpolation
regime. Based on
inductive biases/functional
smoothness. First analyses
starting to appear.

4 Classical Overfitting
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Label noise in one class (this class is unknown by the given label)*

Experiment 1. Consider a binary classification version of CIFAR-10, where CIFAR-10 images x
have binary labels Animal/0bject. Take 50K samples from this distribution as a train set, but
apply the following label noise: flip the label of cats to 0bject with probability 30%. Now train
a WideResNet f to O train error on this train set. How does the trained classifier behave on test
samples? Some potential options are:

1. The test error is uniformly small across all CIFAR-10 classes, since there is only 3% overall
label noise in the train set.

2. The test error is moderate, and “spread” across all animal classes. After all, the classifier is
not explicitly told what a cat or a dog is, just that they are all animals.

3. The test error is localized: the classifier misclassifies roughly 30% of test cats as “objects”,
but all other types of animals are largely unaffected.

*https://arxiv.org/pdf/2009.08092.pdf (also check 'Related Work' in their paper)
https://media.mis.mpg.de/mml/2020-08-21/
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Label noise in one class only affects this class

In fact, reality is closest to option (3), for essentially any good architecture trained to interpolation.
Figure 1 shows the results of this experiment with a WideResNet [Zagoruyko and Komodakis,
2016]. The left panel shows the joint density of (x, y) of inputs x and labels y € {Object/Animal}
on the train set. Since the classifier f is interpolating, this joint distribution is identical to the

classifier’s outputs (z, f(z)) on the train set. The right panel shows the joint density of (z, f(z)) of
the classifier’s predictions on test inputs x.
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Figure 1: The setup and result of Experiment 1. The CIFAR-10 train set is labeled as either Animals
or Objects, with label noise affecting only cats. A WideResNet-28-10 is then trained to O train error
on this train set, and evaluated on the test set. The joint distribution of (z, f(z)) on the train set is
close to (z, f(z)) on the test set. Full experimental details in Appendix D.2.
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Label noise in each class affects the class locally
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Distributional Generalization on model-distinguishable features

Classical Generalization: Letr f be a classifier trained on a set of samples (TrainSet). Then f
generalizes if:

z~TEinse1[ﬂ{Z7 7 )| IN]TE,SH[]I{y# y(x)}] (2)
g f(z) T f(x)

where y(z) is the true class of x, and ¥ is the predicted class.

Distributional Generalization: Let f be a classifier trained on TrainSet. Then f satisfies Distribu-
tional Generalization with respect to tests T if:

VI eT: E [T(z,y)~ E [T(z7)] 3
x~TrainSet x~TestSet
g f(z) g f(x)
which we also write as
Dtr %T Dte (4)

Conjecture 1 (Feature Calibration). For all natural distributions D, number of samples n, family
of interpolating models F, and € > 0, the following distributions are statistically close for all
(e, F, D, n)-distinguishable features L:

(L(@), f(x)  me  (L(z),y) @)
f+Traingz(D") z,y~D
z,y~D

Local Elasticity
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Constant Calibration
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Figure 4: Feature Calibration for Constant Partition 7: The CIFAR-10 train and test sets are
class rebalanced according to (A). Interpolating classifiers are trained on the train set, and we plot the

class balance of their outputs on the test set. This roughly matches the class balance of the train set,
even for poorly-generalizing classifiers.
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Neural network is not Bayes Optimal

WideResNet-28-10 + CIFAR-10
(mislabeling class 0~ 1 with probability p)

0.00 0.00 0.00 0.00

Bayes Optimal
Distributional

Generalization

00 01 02 03 04 05 06 07 08 09 10
Noise probability p

Figure 4: Feature Calibration with original classes on CIFAR-10: We train a WRN-28-10 on
the CIFAR-10 dataset where we mislabel class 0 — 1 with probability p. (A): Joint density of the
distinguishable features L (the original CIFAR-10 class) and the classification task labels y on the
train set for noise probability p = 0.4. (B): Joint density of the original CIFAR-10 classes L and the
network outputs f(z) on the test set. (C): Observed noise probability in the network outputs on the
test set (the (1, 0) entry of the matrix in B) for varying noise probabilities p
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Detailed feature calibration between class (confusion matrix)

Test Set
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Figure 6: Feature Calibration with random confusion matrix on CIFAR-10: Left: Joint density
of labels y and original class L on the train set. Right: Joint density of classifier predictions f(z)
and original class L on the test set, for a WideResNet28-10 trained to interpolation. These two joint
densities are close, as predicted by Conjecture 1.
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Detailed feature calibration inside class
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Figure 7: Feature Calibration for multiple features on CelebA: We train a ResNet-50 to perform
binary classification task on the CelebA dataset. The top row shows the joint distribution of this task
label with various other attributes in the dataset. The bottom row shows the same joint distribution
for the ResNet-50 outputs on the test set. Note that the network was not given any explicit inputs
about these attributes during training.
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Model not very good? (Some true labels < noise): Agreement Property

Conjecture 2 (Agreement Property). For certain classifier families F and distributions D, the test
accuracy of a classifier is close to its agreement probability with an independently-trained classifier.
That is, let Sy, S2 be independent train sets sampled from D", and let f, fa be classifiers trained on
S, So respectively. Then

Pr [fi(z) =y] =~ [f1(z) = f2(z)] (12)

Pr
S1,S82~D"

Sy~D"
f1<Trainz(S1) fi<Trainz(S;)
(x,y)~D (z,y)~D
Agreement: ResNet18, CIFAR-10 Agreement: ResNet18, CIFAR-100 Agreement: Myrtle10 Kernel, CIFAR-10
1.0 y=x ) 0.8 1.0{ - y=x
e n=1000 i . * n=50

0.9 n=5000 P 0.7 n=100 P
> n=10000 # > r 208! =250 ¥
= * n=15000 v =06] o P = n=500 g
S08] , n2s000 - 8 . s el n=1000 -
3 o] 194 (0 ey & 50.5( = (noaugment) 206 n=2000 1
So. g 2 n=5000
” + 0.4 Ly o n=10000 Py
G 0.6 S ; 5 - n=2s000
£ £03 = “
Sos g g A
e 502 = A
g < o2 ) $

0.4 0.1 i

0.3 - 0.0 0.0; ~

03 04 05 06 07 08 09 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
Test Accuracy Test Accuracy Test Accuracy

(a) ResNet18 on CIFAR-10. (b) ResNet18 on CIFAR-100. (c) Myrtle Kernel on CIFAR-10.
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Agreement property also exists in other models

Agreement: RBF Kernel (0 =0.1)
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Agreement: RBF Kernel (0=1)

Local Elasticity
000000000

Agreement: Decision Trees
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Figure 9: Agreement Property for RBF and decision trees. For two classifiers trained on disjoint
train sets, the probability they agree with each other (on the test set) is close to their test accuracy. For
UCI, each point corresponds to one UCI task, and error bars show 95% Clopper-Pearson confidence
intervals in estimating population quantities.
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Local Elasticity® (also known as stiffness®)

(a) Linear classifier updated by SGD. (b) Neural networks updated by SGD.

Figure 2: An illustration of linear regression and neural networks updated via SGD. The prediction
of ' changes a lot after an SGD update on x in the linear case, though ' is far away from . In
contrast, the change in the prediction at &’ is rather small in the neural networks case.

®ICLR2020 https://arxiv.org/pdf/1910.06943. pdf
*https://arxiv.org/pdf/1901.09491 . pdf
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Relative similarity and kernelized similarity

dL(f (2, w), y) OL(f(z, w),y) Of(w,w)

+ e 2 i _ ) ) 3

= =w — . . 1
YT Gw 4 af w M
The essence of local elasticity is that the change in the prediction has an (approximate) monotonic
relationship with the similarity of feature vectors. Therefore, the change can serve as a proxy for the

similarity of two inputs x and '

[f (', w) - f(z', w)]

Sl ®) = )~ T w)l o
/ 1= 1 (o 0C @)\
') - f@'w) = f (2w -z - 2L gt

of(x’',w) 9L Of(x,w)
. 7 o 9 =8 ) o (4
s w) - () 2 B0, piot, )
_ of (@' w) 9f (@, w)
8 f ow T ow ’

The factor —n 57 M does not involve &, just as the denominator | f (x, w™) — f(x, w)| in Equation (2).
This observatlon motivates an alternative definition of the similarity:
f@' w) - f(a' wt)

TIOE(f(w-W)‘y) i

of

3)

Sker(z,2') 1=

Local Elasticity
0O@0000000
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Comparisons between RelLU neural networks and linear neural networks
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Elastic-Locality based clustering

Algorithm 1 The Local Elasticity Based Clustering Algorithm.

Input: primary dataset P = {;}!_,, auxiliary dataset A = {Z;}"",, classifier f(z,w), initial

%0 BNl B i UES

=1
weights wo, loss function £, learning rate 7, option 0 €{relative, kernelized}

: combine D = {(x;,y; = 1) for x; € P} U{(xi,y; = —1) for z; € A}
: set S ton x n matrix of all zeros
: fort=1ton+mdo

sample (z,y) from D w/o replacement
wg = SGD(wy—1,,Y, f, L, 1)
if y = 1 then

p: = Predict(wy, P, f)

findl1 <i<nsuchthatx =z, € P

if o = relative then
[Pt—Pi—1|

St = @ -pa (0]
else
g+ = GetGradient(wi_1,z,vy, f, L)
— Pit—Pi-1
St = xa
end if
end if

set the ith row S(7,:) = 8¢

: end for

. Ssymm = %(S + ST)

© Ysubelass = Clustering(Ssy,"m)
: return Ysubelass
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Locally Elastic Stability’

Definition (Locally Elastic Stability)

An algorithm A has locally elastic stability 5p,(-,-) with respect to the loss function /
if, for all m, the inequality

|(As, z) — (Ag\i, 2)| < Bm(zi,2)
holds for all S€ Z™ 1 <i<m, and z€ Z.

Definition (Uniform Stability)

Let BY be a sequence of scalars. An algorithm A has uniform stability 5 with respect
to the loss function [/ if

[(As, 2) — (Asv, 2)| < B, (1)
holds for all S€ Z™ 1 <i<m, and z€ Z.

TAISTATS 20217 https://arxiv.org/pdf/2010.13988. pdf
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Comparisons between RelLU neural networks and linear neural networks
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(a) Sensitivity of neural networks. (b) Sensitivity of a linear model.

Figure 1: Class-level sensitivity approximated by influence functions for an 18-layer ResNet and a linear
model on CIFAR-10. The vertical axis denotes the classes in the test data and the horizontal axis denotes
the classes in the training data. The class- level sensitivity from class @ in the training data to class b in
the test data is defined as C(cq, ¢p) = m D aies, zed, 110, 2) = U077, 2)|, where S, denotes the

set of examples from class a in the training data and Sj denotes set of examples from class b in the test
data. More details are in Appendix B.
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(d) Linear model (epoch 0).
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(b) Neural networks (epoch 10).
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(e) Linear model (epoch 10).
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nd linear neural networks
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(¢) Neural networks (epoch 50).
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(f) Linear model (epoch 50).
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We write A(As) as a shorthand for the defect E,(As,2) — >_7; I(As, z)/m, where

the expectation [E, is over the randomness embodied in z~ D. In particular,

E.l(As, z) depends on As.

Theorem

Let A be an algorithm that has locally elastic stability Bm(-,-) with respect to the loss
function |. Fixing 0 < § <1 and n > 0, for sufficiently large m, with probability at

least 1 — &, we have

A(Ag) < 25UPzez E-5(Z,2) <2 sup E,5(Z,2) + 1+ M,

m

zZez

> 2l0g(2/0)

Models SUPcszez Bm(Z,2) | supyez EzBm(Z,2) | ratio
Linear model 314 40 8
Neural networks 3.05 0.02 153
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Generalization Bounds for SGD

Definition
A randomized algorithm A is B (-, -)-locally elastic stable if for all S € Z”, we have

[EA[l(As, 2)] = EA[l(As\i, 2)]| < Bm(zi, 2),
where the expectation is over the randomness embedded in the algorithm A.

Proposition (Non-convex Optimization)

Assume that the loss function I(-, z) is non-negative and bounded for all z € Z.
Without loss of generality, we assume 0 < [(-,z) < 1. In addition, we assume (-, z) is
a-smooth and convex for all z € Z. We further assume I(-, z) is L(z)-Lipschitz and
L(z) < oo for all z€ Z and L = sup,z L(z) < co. Suppose that we run SGD for T
steps with monotonically non-increasing learning rate n; < c/t for some constant
c> 0. Then, R , 1

E[@7, 2] - EUOY, 2] < ym( (L) + L)L) T) =7,
where ym = (1 4+ 1/(ac))/(m — 1).
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