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Soft Actor-Critic in Real World Experiments

Soft actor-critic solves these tasks quickly:

Minitaur locomotion: 2 hours

Block-stacking: 2 hours

Valve-turning task from image observations: 20 hours

Valve-turning task with the actual valve position: 3 hours

Prior work used PPO to learn the same task in 7.4 hours

https://bair.berkeley.edu/blog/2018/12/14/sac/
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Why formulate RL as Inference?

Bayesian version of RL algorithms (changing max to softmax)

A natural exploration strategy based on entropy maximization

Interpretation for the reward function

Effective tools for inverse reinforcement learning (to analyze human behavior)
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Markov Decision Process (MDP)

Probabilistic Graphical Models (PGM)

+ Reward (or loss, utility) function

· · · st

at
Policy

at ∼ π(at |st , θ)
Agent-define

st+1

at+1
State transitions

st+1 ∼ p(st+1|st , at)
Likely unknown

· · ·

rt
Rewards

rt = r(st , at) ≤ 0
Likely unknown

rt+1
Goal

maxπ Es1:T ,a1:T

∑T
t=1 rt
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Algorithms in Reinforcement Learning

Model-Based (RL as planning): Dynamic Programming (DP)

Policy iteration; Value iteration.

Model-Free (RL as learning + planning):

Monte Carlo Methods (MC)

Temporal-Difference Learning (TD = DP + MC)
Value-Based

On-policy: SARSA
Off-policy: Q-learning, Deep Q-Network (DeepMind, 2015)

Policy-Based
Policy Gradient
Proximal Policy Optimization (PPO, OpenAI, 2017)

Policy-Based + Value-Based
Actor-Critic
Deep Deterministic Policy Gradient (DDPG, Deepmind, 2015)
Twin Delayed Deep Deterministic PG (TD3, McGill, 2018)
Soft Actor-Critic (SAC, Berkeley & Google, 2018)
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Outline

Introduction

Maximum entropy reinforcement learning (Levine, 2018)

Deterministic dynamics - Probabilistic inference
Stochastic dynamics - Variational inference

Applications

Maximum Entropy Policy Gradients
Soft Q-Learning
Soft (Maximum Entropy) Actor-Critic

Future directions
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MDP as a Probabilistic Model

Policy’s trajectory (history) distribution

p(τ) = p(s1:T , a1:T |θ)

= p(s1)
T∏
t=1

p(at |st , θ)p(st+1|st , at)

Set a binary r.v. Ot as optimal action indicator

Ot = 1: at is optimal under st
Ot = 0: not optimal

Set the distribution of Ot as

p(Ot = 1|st , at) = exp(r(st , at))

Why?

st

at

st+1

rt

Ot
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MDP as a Probabilistic Model

p(τ) = p(s1)
T∏
t=1

p(at |st , θ)p(st+1|st , at)

p(Ot = 1|st , at) = exp(r(st , at))

p(τ |O1:T = 1) ∝ p(τ,O1:T = 1)

= p(s1)
T∏
t=1

p(Ot = 1|st , at)p(at |st , θ)p(st+1|st , at)

= p(s1)
T∏
t=1

exp(r(st , at))p(at |st , θ)p(st+1|st , at)

= p(τ) exp

(
T∑
t=1

r(st , at)

)

st

at

st+1

rt

Ot
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MDP as a Probabilistic Model

p(τ |O1:T = 1) ∝ p(τ) exp

(
T∑
t=1

r(st , at)

)

For deterministic dynamics (st+1 = f (st , at)),
if the initial policy is uniformly distributed (p(at |st) = 1

|A|), and

the trajectory τ is possible, then p(τ) is constant, and we have

p(τ |O1:T = 1) ∝ exp
(∑T

t=1 r(st , at)
)

Trajectory with larger reward would have larger probability to be
the actual history if all the actions are considered to be optimal

Why is this useful?

st

at

st+1

rt

Ot
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MDP as a Probabilistic Model (deterministic dynamics)

Why is this useful?

Can model sub-optimal behavior (inverse RL)
Can apply inference algorithms to solve control and planning
problems
Provides an explanation for why stochastic behavior might be
preferred (useful for exploration and transfer learning)

How to recover the underlying policy π(at |st) using O1:T ?

π(at |st) = p(at |st ,Ot:T )

Backward messages: βt(st , at) = p(Ot:T |st , at)
βt(st) = p(Ot:T |st)

st

at

st+1

rt

Ot
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Policy computation using Backward messages

π(at |st) = p(at |st ,Ot:T ) =
p(at , st |Ot:T )

p(st |Ot:T )

=
p(Ot:T |at , st)p(st , at)

p(Ot:T |st)p(st)
=
βt(st , at)

βt(st)
p(at |st)

βt(st , at) = p(Ot |st , at)Est+1∼p(ss+1|st ,at ,Ot)[βt+1(st+1)]

βt(st) = Eat∼p(at |st)[βt(st , at)]

Let Vt(st) = log βt(st), Qt(st , at) = log βt(st , at),

Qt(st , at) = r(st , at) + logE[exp(Vt+1(st+1))]

≈ r(st , at) + max
st+1

Vt+1(st+1) (BAD for stochastic dynamics)

Vt(st) = logE[exp(Qt(st , at))] ≈ max
at

Qt(st , at)

π(at |st) = exp(Qt(st , at)− Vt(st))p(at |st)

st

at

st+1

rt rt+1

Ot Ot+1
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MDP as a Probabilistic Model (stochastic dynamics)

For stochastic dynamics, we cannot control the transition
probability

p(st+1|st , at) 6= p(st+1|st , at ,Ot)

What do we want?

The trajectory distribution under O1:T = 1

What can we change?

The policy parameter θ
The definition of Ot

Use qθ(s1:T , a1:T ) to approximate p(s1:T , a1:T |O1:T )

Let x = O1:T , z = (s1:T , a1:T )

Use qθ(z) to approximate p(z |x)

It’s Variational Inference!

st

at

st+1

rt rt+1

Ot Ot+1



Background Maximum Entropy RL framework Applications on RL Algorithms Conclusion and Future

Policy computation using Variational Inference

Evidence Lower Bound (ELBO)

log p(x) ≥ Ez∼qθ(z)[log p(x , z)− log qθ(z)]

Let qθ(s1:T , a1:T ) = p(s1)
∏

t p(st+1|st , at)
∏

t π(at |st)

log p(x , z) = log p(s1) +
∑
t

log p(st+1|st , at)

+
∑
t

(log p(at |st) + log p(Ot |st , at))

Set r(st , at) = log p(Ot |st , at) + log p(at |st) (change definition of Ot )

log p(O1:T ) ≥ E(s1:T ,a1:T )∼q [
∑

t(r(st , at)− log π(at |st))]
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Policy computation using Variational Inference

Consider t = T

E(sT ,aT )∼π(aT |sT )qT (sT )[r(sT , aT )− log π(aT |sT )]

Use π(aT |sT ) ∝ exp(r(sT , aT )) to maximize ELBO

Q(sT , aT ) = r(sT , aT ), V (sT ) = log
∫
A exp(Q(sT , aT ))daT

π(aT |sT ) = exp(Q(sT , aT )− V (sT ))

Consider t < T and maximize ELBO recursively, we have

π(at |st) = exp(Q(st , at)− V (st))

Q(st , at) = r(st , at) + Est+1∼p(st+1|st ,at)[V (st+1)]

V (st) = log

∫
A

exp(Q(st , at))dat
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Connection between MERL and Boltzmann Exploration

π(at |st) = exp(Q(st ,at))∫
A exp(Q(st ,at))dat

A very natural exploration strategy (softmax instead of max)

Actions with large Q-value should be taken more often

Exploration strategy: Boltzmann-like distribution

-Q-function is the energy.
-V-function is the minimum of the expected energy w.r.t. π(at |st) minus an entropy
of π(at |st).

Energy-based RL with a SARSA (on-policy TD) update rule actually optimize the
maximum entropy objective

Q(st , at)← Q(st , at) + α[r(st , at) + Q(st+1, at+1 ∼ π)− Q(st , at)]

Sallans and Hinton (2004)
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Soft Q-Learning

Standard Q-learning

φ← φ+ α∇φQφ(s, a)(r(s, a) + V (s ′)− Qφ(s, a))

Target value: V (s) = maxa Qφ(s, a)

Soft Q-learning

φ← φ+ α∇φQφ(s, a)(r(s, a) + V (s ′)− Qφ(s, a))

Target value: V (s) = log
∫

exp(Qφ′(s, a))da

Optimal policy: π(a|s) = exp(Qφ(s, a)− V (s))

General equivalence between soft Q-learning and
policy gradients (Haarnoja et al., 2017)
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Maximum Entropy Policy Gradients

Similar to REINFORCE (Williams, 1992) which maximizes the value function
Vπθ(s0)

Directly maximize the ELBO

J(θ) = E(s1:T ,a1:T )∼q

[
T∑
t=1

(r(st , at)− log π(at |st))

]

∇θJ(θ) =
T∑
t=1

E(st ,at )∼qt (st ,at )

[
∇θ log qθ(at |st)

(
T∑

t′=t

r(st′ , at′)− log qθ(at′ |st′)− 1

)]

=
T∑
t=1

E(st ,at )∼qt (st ,at )

[
∇θ log qθ(at |st)Â(st , at)

]

Use generalized advantage estimator (Schulman et al., 2016)
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Soft Actor-Critic Algorithms (Haarnoja et al., 2018)

Standard Actor-Critic (AC) models both policy (πφ(at |st)) and Q-function
(Qθ(st , at))
Maximum Entropy (soft) Actor-Critic is based on soft Policy Improvement and
soft Q-function
Let V (st) = Eat∼π[Q(st , at)− α log π(at |st)]
Minimize JQ(θ) (critic), Jπ(φ) (actor)

JQ(θ) = E(st ,at)∼D

[
1

2
(Qθ(st , at)− (r(st , at) + γEst+1 [Vθ̄(st+1)]))2

]
∇θJQ(θ) = ∇θQθ(at , st)(Qθ(at , st)−

(r(st , at) + γQθ̄(st+1, at+1)− α log(πφ(at+1|st+1))))

Jπ(φ) = Est∼D[Eat∼πφ [α log(πφ(at , st))− Qθ(st , at)]], at = fφ(εt ; st)

∇φJπ(φ) = ∇φα log(πφ(at |st))+

(∇atα log(πφ(at |st))−∇atQ(st , at))∇φfφ(εt ; st)
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Soft Actor-Critic Algorithms

Use two soft Q-functions to mitigate positive bias in the policy improvement step that is
known to degrade performance of value based methods.

Also optimize temperature α.
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Soft Actor-Critic Experiments
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Soft Actor-Critic Hyperparameters
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Soft Actor-Critic in Real World Experiments

Soft actor-critic solves these tasks quickly:

Minitaur locomotion: 2 hours

Block-stacking: 2 hours

Valve-turning task from image observations: 20 hours

Valve-turning task with the actual valve position: 3 hours

Prior work used PPO to learn the same task in 7.4 hours

https://bair.berkeley.edu/blog/2018/12/14/sac/
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Benefits of soft optimality

Improve exploration and prevent entropy collapse

important for policy gradient algorithms

Easier to specialize (finetune) policies for more specific tasks

Principled approach to break ties

equally good actions get equal probability

Better robustness (due to wider coverage of states)

inject noise to the policy

Can reduce to hard optimality as reward magnitude increases

Good model for modeling human behavior (inverse RL (Ziebart et al., 2008))
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Conclusion: connection between RL and Inference

RL viewed as inference in graphical model
Set value function and Q-function as backward messages
Maximize both reward and entropy
Use variational inference to remove optimism
Use Ot to make probabilistic interpretation of rewards

Applications
Soft Q-Learning
Maximum Entropy Policy Gradients
Maximum Entropy Actor-Critic Algorithm

Future Directions
Maximum entropy RL and Latent Variable models

Graphical model with additional variables to model time correlated stochasticity for
exploration
Higher-level control through learned latent action spaces

Are maximum Entropy methods robust to domain shift, unexpected perturbations,
and model errors?
Re-design of reward functions
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