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Soft Actor-Critic in Real World Experiments

Soft actor-critic solves these tasks quickly:
@ Minitaur locomotion: 2 hours
@ Block-stacking: 2 hours
@ Valve-turning task from image observations: 20 hours

@ Valve-turning task with the actual valve position: 3 hours
o Prior work used PPO to learn the same task in 7.4 hours

Conclusion and Future
oo


https://bair.berkeley.edu/blog/2018/12/14/sac/
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Why formulate RL as Inference?

Bayesian version of RL algorithms (changing max to softmax)
A natural exploration strategy based on entropy maximization
Interpretation for the reward function

Effective tools for inverse reinforcement learning (to analyze human behavior)
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Markov Decision Process (MDP)

@ Probabilistic Graphical Models (PGM)
@ + Reward (or loss, utility) function

Policy State transitions
ar ~ m(at|st, 0) st41 ~ p(sty1lst, ar)
Agent-define Likely unknown
o H @

Rewards Goal

e = I’(St, at) <0 maxz ESl:T,aLT Zz—:l re

Likely unknown
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Algorithms in Reinforcement Learning

Model-Based (RL as planning): Dynamic Programming (DP)
@ Policy iteration; Value iteration.

Model-Free (RL as learning + planning):
@ Monte Carlo Methods (MC)

e Temporal-Difference Learning (TD = DP + MC)
@ Value-Based

e On-policy: SARSA

o Off-policy: Q-learning, Deep Q-Network (DeepMind, 2015)
Policy-Based

e Policy Gradient

e Proximal Policy Optimization (PPO, OpenAl, 2017)
Policy-Based + Value-Based
Actor-Critic
Deep Deterministic Policy Gradient (DDPG, Deepmind, 2015)
Twin Delayed Deep Deterministic PG (TD3, McGill, 2018)
Soft Actor-Critic (SAC, Berkeley & Google, 2018)
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@ Introduction
e Maximum entropy reinforcement learning ( )
e Deterministic dynamics - Probabilistic inference
e Stochastic dynamics - Variational inference
@ Applications

e Maximum Entropy Policy Gradients
e Soft Q-Learning
e Soft (Maximum Entropy) Actor-Critic

@ Future directions

Conclusion and Future
oo
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MDP as a Probabilistic Model

e Policy's trajectory (history) distribution
p(7) = p(s1.7,a1.7/0)

-
= p(s1) H p(at|st, 0)p(se+1lst, ar)
t=1

@ Set a binary r.v. O; as optimal action indicator
e O; =1: a; is optimal under s;
e O; = 0: not optimal

@ Set the distribution of O; as

p(Or = 1|st, a¢) = exp(r(st, at))

o Why?

Conclusion and Future
oo
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MDP as a Probabilistic Model

p(r) = p(s1) [ [ p(atlse, 0)p(sesrlst, ar)
p(Or = 1|s¢, a:) = exp(r(se, at))
p(T‘Ol-T = 1) (T 01-7— = 1)

T
H Ot = 1|5taat) (3t|5ta9)P(5t+1‘5t73t)

,':]ﬂ

r(se, at))p(ae|se, 0)p(Se+1lst, ar)
t=1

-
T) exp (Z r(se, ar >
t=1

Conclusion and Future
oo
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MDP as a Probabilistic Model

p(r|O1.1 = 1) o p(7) exp (Z r(se, 3t)>

t=1

e For deterministic dynamics (s¢+1 = f(st, at)),

if the initial policy is uniformly distributed (p(a¢|s:) = ﬁ) and
the trajectory 7 is possible, then p(7) is constant, and we have

p(7|O1.7 = 1) xx exp (ZtT:l r(se, at)>

@ Trajectory with larger reward would have larger probability to be
the actual history if all the actions are considered to be optimal

@ Why is this useful?

Conclusion and Future
oo
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MDP as a Probabilistic Model (deterministic dynamics)
@ Why is this useful?
o Can model sub-optimal behavior (inverse RL) e
e Can apply inference algorithms to solve control and planning
problems

e Provides an explanation for why stochastic behavior might be
preferred (useful for exploration and transfer learning) e @

@ How to recover the underlying policy m(at|s;) using O1.77
(m(arlse) = p(aclst, Oe 1)
e Backward messages: [:(st, at) = p(O¢.7|st, at) G

/Bt(st) = p(Ot:T‘St)
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Policy computation using Backward messages

p(ar, 5¢|Or.7)
W(at\st) P(3t|5f> t'T) p(5t|0t:T)

p(st, ar) _ Be(st, ar)
p(st) Bi(st)

ﬂt(sl’a at) = p(ot|5t7 at)EstHNp(ssH\s,,at,Ot)[ﬂt+1(5t+1)]
Be(st) = Eanp(afse) [Be(ses ar)]

Let Vi(s¢) = log Be(se), Qe(st,ar) = log Be(se, ar),

_ P(Ot:T|3t, St)
p(Or.Tlst)

p(at|s:)

Qe(se; ar) = r(se, ar) + log E[exp(Vet1(se+1))]
~ I‘(St7 at) + math+1(st+1) (BAD for stochastic dynamics)
St+1

Vi(st) = log Elexp(Q(st, ar))] = max Qx(st, ar)

[w(atlst) = exp(Qe(se, 1) = Va(se))p(arlso) |

Conclusion and Future
oo
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()
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MDP as a Probabilistic Model (stochastic dynamics)

@ For stochastic dynamics, we cannot control the transition
probability

P(5t+1\5ta 3t) # P(5t+1\5t, at, Ot)
What do we want?

e The trajectory distribution under 0.7 =1 e @
What can we change?

e The policy parameter 6

e The definition of O;
Use go(s1:7,a1.7) to approximate p(si.7,a1.7|O1.7) G

Let x = O1.7, z= (Sl:T7 a1:T)

Use gy(z) to approximate p(z|x)

It's Variational Inference! @ @
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Policy computation using Variational Inference
e Evidence Lower Bound (ELBO)
log p(x) > E,q,(z)[log p(x, z) — log go(2)]
o Let go(s1:7,a1:7) = p(s1) [1; P(st+1lst, ac) [T, m(arlst)
log p(x, z) = log p(s1) + Y _ log p(st.41|st, ar)
t
+ ) (log p(at|st) + log p(O|st, ar))
t

o Set r(st, ar) = log p(O¢|st, ar) + log p(at|st) (change definition of O)

10g p(O1:7) 2 E(sy 0y r)vq (15t ar) — log m(arlse))]
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Policy computation using Variational Inference
o Considert=T

E(sr.ar)~n(arisr)ar(sp)lr(sT, aT) — log m(ar|sT)]
e Use m(ar|sT) o exp(r(sT,ar)) to maximize ELBO
e Q(st,ar)=r(st,ar), V(st)=log fA exp(Q(sT,ar))dar
m(ar|sT) = exp(Q(sT,ar) — V(s7))
@ Consider t < T and maximize ELBO recursively, we have
| m(atlse) = exp(Q(st; a) — V(st))|
Q(st;sat) = r(se, at) + Es,  op(seiafsea) [V (St+1)]

V(st) = Iog/Aexp(Q(st,at))dat
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Connection between MERL and Boltzmann Exploration

wlarls) = 7 oG e

A very natural exploration strategy (softmax instead of max)

Actions with large Q-value should be taken more often

Exploration strategy: Boltzmann-like distribution

e -Q-function is the energy.
e -V-function is the minimum of the expected energy w.r.t. 7w(a¢|s;) minus an entropy
of m(a¢|st).

Energy-based RL with a SARSA (on-policy TD) update rule actually optimize the
maximum entropy objective

Q(st, ar) < Q(st, ar) + alr(st, ar) + Q(Se+1, ar+1 ~ ) — Q(5t, ar)]

° )
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Soft Q-Learning

@ Standard Q-learning

¢+ ¢+ aVyQu(s,a)(r(s,a) + V(s') — Qu(s, a))

Target value: V(s) = max, Qu(s, a)

Soft Q-learning
¢ ¢+ aVyQy(s,a)(r(s,a) + V(s') — Qs(s, a))

Target value: V(s) = log [ exp(Qy (s, a))da
Optimal policy: m(als) = exp(Qg(s,a) — V(s))
General equivalence between soft Q-learning and
policy gradients ( )
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Maximum Entropy Policy Gradients

e Similar to REINFORCE ( ) which maximizes the value function
Vﬂe(SO)
@ Directly maximize the ELBO

t=1

J(0) = E(or001)a |:Z(r(sf, ar) — Iogﬁ(at|st)):|

T

)
T = 3 B -ate {veuogqaatst (z loqua@)—lﬂ

t'=t

T
Z (st,at)~qe(st,at) |:v9 lOg q9(3f|st)A(sf at)]

@ Use generalized advantage estimator ( )
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Soft Actor-Critic Algorithms ( )

@ Standard Actor-Critic (AC) models both policy (74 (at|st)) and Q-function
(Qo(st; ar))

e Maximum Entropy (soft) Actor-Critic is based on soft Policy Improvement and
soft Q-function

o Let V(st) = E,nn[Q(St, ar) — cvlog m(aest)]
e Minimize Jgo(0) (critic), J-(¢) (actor)

1
Jo(0) = E(St,&t)ND E(QO(SU at) — (r(st,at) + 7’E5t+1[\/§(5t+1)]))2
VoJq(0) = Vo Qy(ar, 5t)(Qo(ar, 5t)—

(r(st, at) + 7 Qp(St41; ae+1) — alog(mg(ae+1/se+1))))

Jﬂ(ﬁb) = ESth[Eat~w¢ [04 |0g(77¢(3t7 St)) - QQ(Sn 3t)]]7 atr = f¢>(€t; St)
Vodr(9) = Vyalog(ms(ae|se))+
(vatO‘ |Og(7r¢(at]st)) — Vg, Q(Sta at))v¢f¢(€t; St)
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Soft Actor-Critic Algorithms

Applications on RL Algorithms
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Algorithm 1 Soft Actor-Critic

Input: 01, 92, (f)
01 <~ 01, (92 — 02
D« 0
for each iteration do
for each environment step do
ag ~ 7r4,(at\st)
St41 ™~ P(St+1\5t7az)

D+ D U{(s¢,a¢,7(s¢,8¢),8¢41)}

end for
for each gradient step do

0; + 0; — A\qVo, Jq(8;) fori € {1,2}

¢ §— ¢ = AWAV¢J7I'(¢)
a <+ a—AVyJ(a)

0; < 70; + (1 —7)0; fori € {1,2}

end for
end for
Output: 64, 65, ¢

> Initial parameters
> Initialize target network weights
> Initialize an empty replay pool

> Sample action from the policy
> Sample transition from the environment
> Store the transition in the replay pool

> Update the Q-function parameters
> Update policy weights

> Adjust temperature

> Update target network weights

> Optimized parameters

Conclusion and Future
oo

@ Use two soft Q-functions to mitigate positive bias in the policy improvement step that is
known to degrade performance of value based methods.

@ Also optimize temperature «.
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Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs
consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging
tasks.
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Soft Actor-Critic Hyperparameters

Table 1: SAC Hyperparameters

Parameter ‘ Value

optimizer Adam (Kingma & Ba}|2015)
learning rate 3-1071

discount (v) 0.99

replay buffer size 108

number of hidden layers (all networks) | 2

number of hidden units per layer 256

number of samples per minibatch 256

entropy target —dim (A) (e.g. , -6 for HalfCheetah-v1)
nonlinearity ReLU

target smoothing coefficient () 0.005

target update interval 1

gradient steps 1
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Soft Actor-Critic in Real World Experiments

Soft actor-critic solves these tasks quickly:
@ Minitaur locomotion: 2 hours
@ Block-stacking: 2 hours
@ Valve-turning task from image observations: 20 hours

@ Valve-turning task with the actual valve position: 3 hours
o Prior work used PPO to learn the same task in 7.4 hours

Conclusion and Future
oo


https://bair.berkeley.edu/blog/2018/12/14/sac/
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Benefits of soft optimality

Improve exploration and prevent entropy collapse
e important for policy gradient algorithms

Easier to specialize (finetune) policies for more specific tasks

Principled approach to break ties

e equally good actions get equal probability
@ Better robustness (due to wider coverage of states)
e inject noise to the policy

Can reduce to hard optimality as reward magnitude increases

Good model for modeling human behavior (inverse RL ( )
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Conclusion: connection between RL and Inference

@ RL viewed as inference in graphical model
e Set value function and Q-function as backward messages
e Maximize both reward and entropy
e Use variational inference to remove optimism
e Use O; to make probabilistic interpretation of rewards
@ Applications
e Soft Q-Learning
e Maximum Entropy Policy Gradients
e Maximum Entropy Actor-Critic Algorithm
e Future Directions
e Maximum entropy RL and Latent Variable models

Conclusion and Future
[ 1o}

e Graphical model with additional variables to model time correlated stochasticity for

exploration
o Higher-level control through learned latent action spaces

e Are maximum Entropy methods robust to domain shift, unexpected perturbations,

and model errors?
e Re-design of reward functions
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Further reading

@ Sergey Levine. CS285 at UC Berkeley.
http://rail.eecs.berkeley.edu/deeprlcourse/

@ Sergey Bartunov. Reinforcement learning through the lense of variational
inference. DeepBayes2018. https://www.youtube.com/watch?v=6v3RxQycTOE

e Softlearning (official SAC GitHub repo).
https://github.com/rail-berkeley/softlearning

o Lilian Weng. Policy Gradient Algorithms. https://lilianweng.github.io/
1il-1log/2018/04/08/policy-gradient-algorithms.html
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