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Differential Privacy (DP) is widely used

Figure 1: Differential Privacy is used in US Census 2020; Apple’s study of diagnostic device, health

and web browsing data; Google’s Privacy Sandbox; Microsoft’s analytics on app usage; Facebook’s

mobility data release during COVID-19; Amazon’s AWS; Snapchat’s machine learning models; Uber’s

detection of trends; Salesforce’s reporting logs, etc.
2



Differential Privacy: state-of-the-art privacy protection measure

Figure 2: The output of the mechanism is roughly the same (approximately indistinguishable) when

the input data is slightly changed. This is required for all datasets as input.
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DP Bootstrap for private uncertainty quantification
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DP Bootstrap: privacy analysis and implementation
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• If we use DP Bootstrap estimates for inference, its privacy cost is similar to releasing the

same number of DP estimates based on the original dataset (uncertainty only from DP).

• The sampling distribution from DP Bootstrap is affected by the added DP noises. We use

deconvolution to recover the non-private sampling distribution.
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Private confidence intervals (CI) and its application

• We construct private CIs using quantiles of the deconvolved sampling distribution.

• Using the 2016 Canada Census Public Use Microdata, we build CI for the slope parameter

in the quantile regression between market income and shelter cost.

• To the best of our knowledge, we are the first to do private inference in quantile regression.

Figure 3: Results of CIs for the slope parameter. The confidence level is 90%, and the privacy

guarantee is 1-Gaussian DP. We have 2000 replicates to evaluate the performance of our CI:

(a) DP Bootstrap has a slightly larger CI width compared to non-private Bootstrap,

(b) The coverage is satisfactory (always above 90%; close to 90% for large sample size),

(c) The CI never contains 0, which means there is dependence between market income and shelter cost.
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Thank you!

Our paper is on arXiv:

https://arxiv.org/abs/2210.06140

Contact me:

wang4094@purdue.edu
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An example for de-anonymization

Figure 4: The Guidance on De-identification of Protected Health Information. hhs.gov. Dataset on

the left is released without Name. But using another public dataset on the right, we can recover the

names in the anonymized dataset.

hhs.gov


Hypothesis Testing, Trade-off Function, and f -DP

• The trade-off function maps the Type I error to the optimal corresponding Type II error.

• If HammingDistance(D,D ′) = 1, we denote D ∼= D ′ and call them neighboring datasets.

• Differential privacy (DP) ensures the test is hard for any neighboring datasets in hypotheses.

• A random algorithm M is f -DP if the trade-off function between M(D) and M(D ′) for any

D ∼= D ′ is lower bounded by f ; it is µ-Gaussian DP (GDP) if the f is the trade-off function

between N (0, 1) and N (µ, 1).



Existing results and their problems

• It was mistakenly claimed that one could obtain the standard error of the output without

additional privacy cost using bootstrap1.

• There was also a wrong analysis of the DP bootstrap using the privacy loss distribution2.

• The correct DP analysis of subsampling with replacement was only given in (ϵ, δ)-DP3.

They did not consider the composition of the subsampling results and ignored the

application on bootstrap methods.

1Thomas Brawner and James Honaker (2018). “Bootstrap inference and differential privacy: Standard errors

for free.” In: Unpublished Manuscript.
2Antti Koskela, Joonas Jälkö, and Antti Honkela (2020). “Computing tight differential privacy guarantees

using fft.” In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 2560–2569.
3Borja Balle, Gilles Barthe, and Marco Gaboardi (2018). “Privacy amplification by subsampling: Tight analyses

via couplings and divergences.” In: Advances in Neural Information Processing Systems 31.



DP guarantee with single bootstrap estimate

Theorem

Let f = (f1, . . . , fn) be a sequence of tradeoff functions and p = (p1, . . . , pm) be a vector of

probability mass. Assume M satisfies TM(D),M(D′) ≥ fi for any HammingDist(D,D ′) = i .

For any given λ ∈ (−∞, 0], we can find αi such that f ′i (αi ) = λ. For
∑m

i=1 pi = 1 and

α =
∑m

i=1 piαi , define mix(p, f ) : α 7→
∑m

i=1 pi fi (αi ).

1. The mapping mix(p, f ) is well-defined.

2. Let p0 = (1− 1/n)n, pi =
1
p0

(
n
i

)
(1/n)i (1− 1/n)n−i , f0(α) = 1− α.

Then M◦ boot is fboot-DP where fboot := mix
(
(p0, p), (f0, f )

)
;

In addition, a stronger result is fboot := Symm(p0f0 + (1− p0)mix(p, f )) and Symm(·)
maps asymmetric tradeoff functions to symmetric ones (w.r.t. the line y = x).



DP guarantee with multiple bootstrap estimates

• As the bootstrap method estimates the sampling distribution with the empirical

distribution of multiple bootstrap estimates, we provide DP analysis for the mechanism

outputting multiple DP Bootstrap estimates.

Theorem

Assume Mi satisfies µB -GDP. If lim
B→∞

µB

√
(2− 2/e)B → µ and we let M′

i = Mi ◦ boot,
MB

boot = {M′
1, . . . ,M′

B}, then MB
boot asymptotically satisfies µ-GDP.

• Although the trade-off function for M◦ boot is not in the form of GDP, the nature of

bootstrap method allows us to assume the composition number is large and the

asymptotic privacy analysis can be a good approximation.



Private confidence intervals (CI) and its application

• We construct private CIs using quantiles of the deconvolved sampling distribution.

• We conduct real-world experiments on the 2016 Census Public Use Microdata Files.

• First, we build CIs for the population mean of the individual’s market income in Ontario.

We use DP Bootstrap with the Gaussian mechanism and compare our results with

NoisyVar4. The confidence level is 90%, and the privacy guarantee is 1-GDP.

Table 1: Results of CIs for the mean income. (n = 200, 000.)

Method CI Coverage CI Width

Bootstrap 0.910 (0.006) 279.4 (0.54)

DP Bootstrap 0.905 (0.007) 291.0 (0.54)

NoisyVar 0.857 (0.008) 253.6 (0.16)

4Wenxin Du et al. (2020). “Differentially private confidence intervals.” In: arXiv preprint arXiv:2001.02285.



Private confidence intervals (CI) and its application

• Then we build CIs for the slope parameter in the logistic regression and quantile regression

between the market income and shelter cost. We use DP Bootstrap with the output

perturbation mechanism (built on empirical risk minimization) and compare our results

with DP-CI-ERM5. The confidence level is 90%, and the privacy guarantee is 1-GDP.

Figure 5: Results of CIs for the slope parameter. DP-CI-ERM cannot be used on quantile regression

since it is based on the Hessian of the loss, which is 0 for ρτ (z) = (τ − 1(z ≤ 0))z , z = y − x⊺θ.

5Yue Wang, Daniel Kifer, and Jaewoo Lee (2019). “Differentially Private Confidence Intervals for Empirical

Risk Minimization.” In: Journal of Privacy and Confidentiality 9.1.
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