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What’s the Goal?

Thoughtful quote from Richard Feynman

What I cannot create, I do not understand.
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What’s the Goal? (Generative Adversarial Networks)

Generate meaningful things (Image, Video, Text, Audio, etc.)

Train a function that generate samples from a distribution:

The distribution of human faces:
Progressive GAN, 2017 [11] StyleGAN, 2018 [12]
The distribution of facial expression videos:
MoCoGAN, 2018 [25]
The distribution of 3d objects:
3D-GAN, 2016 [26]
The distribution of music:
MidiNet, 2018 [27] MuseGAN, 2018 [8]
The distribution of drugs:
ATNC, 2018 [19]
The distribution of movie reviews:
MaskGAN, 2018 [9]

https://drive.google.com/drive/folders/0B4qLcYyJmiz0UE9zVHduWFVORlk
https://www.youtube.com/watch?v=kSLJriaOumA
https://github.com/sergeytulyakov/mocogan
https://www.youtube.com/watch?v=mfx7uAkUtCI
https://richardyang40148.github.io/TheBlog/midinet_arxiv_demo.html
https://salu133445.github.io/musegan/results
https://www.eurekalert.org/pub_releases/2018-05/imi-cga050918.php
https://arxiv.org/pdf/1801.07736.pdf
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Why study generative modeling?

Represent high-dimensional structures

Simulate virtual samples for tasks (e.g. self-driving cars [29])

Create arts

Work with multi-modal outputs [31]

Work with missing data or semi-supervised learning

https://worldmodels.github.io/
https://www.thedailybeast.com/christies-sells-first-painting-made-using-artificial-intelligence-for-dollar432500
https://junyanz.github.io/BicycleGAN/
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What’s the Method? (Generative Adversarial Networks)

Image credit: Thalles Silva

Another thoughtful quote from Richard Feynman:

We are trying to prove ourselves wrong as quickly as possible,
because only in that way can we find progress.

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
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What’s the Method? (Generative Adversarial Networks)

Image credit: Thalles Silva

min
G

max
D

L(D,G ) = Ex∼pdata(x)[logD(x)] + Ey∼pfake(y)[log(1− D(y))]

= Ex∼pdata(x)[logD(x)] + Ez∼pZ (z)[log(1− D(G (z)))]

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
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What’s the Method? (Generative Adversarial Networks)
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What’s the Method? (Generative Adversarial Networks)
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L(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pZ (z)[log(1− D(G(z)))]
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What’s the Method? (Generative Adversarial Networks)

What’s going on in training? GAN training visualization

https://www.youtube.com/watch?v=mObnwR-u8pc
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What’s the Method? (Generative Adversarial Networks)

Play with GANs in your browser!

https://poloclub.github.io/ganlab/
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Why it works?

LG (D) =

∫
x

pdata(x) log(D(x))dx +

∫
x

pfake(G)(x) log(1− D(x))dx

∂L

∂D(x)
=

pdata(x)

D(x)
−

pfake(G)(x)

1− D(x)
= 0

D(x) = argmaxD L(G ,D) = pdata(x)
pdata(x)+pfake(G)(x)

LD(G) =

∫
x

pdata(x) log(D(x))dx +

∫
x

pfake(G)(x) log(1− D(x))dx

C(G) = max
D

LD(G)

=

∫
pdata log

(
pdata

pdata + pfake(G)

)
dx +

∫
pfake(G) log

(
pfake(G)

pdata + pfake(G)

)
dx

= − log(4) + KL

(
pdata‖

pdata + pfake(G)

2

)
+ KL

(
pfake‖

pdata + pfake(G)

2

)
G = argmaxG C(G)⇒ pfake(G) = pdata
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Does it work better than others?

What are other generative models?

PixelRNN/CNN/CNN++ [17, 22]

Variational Autoencoder (VAE) [7]
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Does it work better than others? (GAN vs. PixelCNN++)

Relation to maximum likelihood:

PixelCNN++: P(x) =
∏n2

i=1 p(xi |x1, · · · , xi−1).

GAN: D(x) = P(x is real), 1− D(x) = P(x is fake).
n∑

i=1

[logD(xi )+log(1−D(G (zi )))] = logP(∀i , xi is real,G (zi ) is fake)

GAN maximize likelihood with implicit density

Better sample quality

Training is faster

PixelCNN++ maximize likelihood using conditional densities.

Explicit and exact data likelihood

Training is more stable
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Does it work better than others? (GAN vs. PixelCNN++)
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How to measure sample quality? (What is IS?)

Inception Score (IS, proposed by OpenAI, 2016. [21])

Use Inception model [24] to get the distribution of labels.

IS = exp(Ex∼pgKL(p(y |x)‖p(y))), y is the labels of x

Images containing meaningful objects should have a low
entropy p(y |x). p(y) is the marginal distribution by
summming all x . It should has high entropy.

Higher IS is better.

Focus on classifiable object generation and various kinds of
samples. Not focus on the variation within a class.

State of the art

SAGAN (2018) [28] 52.5 (previous work was 36.8)

BigGAN (2018) [5] 166.3 (Realworld Data (Imagenet) 233)

Codes for calculating IS
Some criticisms (A Note on the Inception Score [3])

https://github.com/openai/improved-gan/tree/master/inception_score
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How to measure sample quality? (What is FID?)

Frechet Inception Distance (FID, 2017. [10])

Use Inception-v3 model to get the features of the image.

Calculating Wasserstein-2 distance W2 between the features
of the real samples and the fake samples. Use normal
distribution approximation for W2:
d2((m,C ), (mw ,Cw )) = ‖m−mw‖2

2 +Tr(C +Cw−2(CCw )1/2)

Lower FID is better.

Consistent with Human sensation in authenticity and
variation.

State of the art (50k images)

SAGAN (2018) [28] 18.65 (previous work was 27.62)

BigGAN (2018) [5] 9.6

Codes for calculating FID

https://github.com/bioinf-jku/TTUR/blob/master/FIDvsINC/fid.py
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Does it work better than others? (GAN vs. VAE)

What is Variational Autoencoder?
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Does it work better than others? (GAN vs. VAE)

VAE optimizes variational lower bound on likelihood

Inference of q(z |x): feature representation can be used in
other tasks

Use normal distribution (unimodal distribution) to
approximate p(x |z)

Samples blurrier with lower quality

GAN has an adaptive loss function for generating samples

Samples are good and sharp

Training is unstable

GANs as Learned Loss Functions

GANs as a loss function

https://www.youtube.com/watch?v=eHQglSbS1zM
https://medium.com/vitalify-asia/gans-as-a-loss-function-72d994dde4fb
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Does it work better than others? (GAN vs. VAE)

State of the art of VAE ([6] ICLR 2019 with Rating 9,7,6)
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How to get this GAN Framework?
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How to get this GAN Framework?

Similar Works before GAN:

Actor-Critic methods from Reinforcement Learning [4, 13, 18]

Turing Learning: model versus discriminator [14, 15]

Predictability Minimization model [23]

Proposed by Schmidhuber 1992, who also proposed LSTM.
GAN as inverse PM?
GAN focuses on generation, while PM focuses on encoding.
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GAN Evolution

Vanilla GAN (2014)

Deep convolutional GAN (DCGAN, 2015)

Energy-based GAN (EBGAN, 2016)

Wasserstein GAN (WGAN, 2017)

Spectral Normalization for GAN (SNGAN, 2018)
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Vanilla GAN (2014)
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Deep convolutional GAN (DCGAN, 2015) [20]



Introduction Method GAN Evolution GAN Zoo and Applications Takeaways and more

Deep convolutional GAN (DCGAN, 2015) [20]

Transposed convolution animations
DCGAN in PyTorch (official)

https://github.com/vdumoulin/conv_arithmetic#transposed-convolution-animations
https://github.com/pytorch/examples/blob/master/dcgan/main.py
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Energy-based GAN (EBGAN, 2016) [30]

LD(x , z) = D(x) + [m − D(G (z))]+, LG (z) = D(G (z))

EBGAN in PyTorch

https://github.com/orashi/EBGAN_pytorch
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Energy-based GAN (EBGAN, 2016) [30]
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Energy-based GAN (EBGAN, 2016) [30]
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Problems in Training GAN: Mode collapse

Figure 1: A DCGAN model is trained with an MLP network with 4 layers, 512 units
and ReLU activation function, configured to lack a strong inductive bias for image
generation. The results shows a significant degree of mode collapse. [2]
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Problems in Training GAN: Vanishing gradient

Figure 2: First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with the
generator fixed, a discriminator is trained from scratch and measure the gradients
with the original cost function. We see the gradient norms decay quickly (in log
scale), in the best case 5 orders of magnitude after 4000 discriminator iterations. [1]
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Wasserstein GAN (WGAN, 2017) [2]
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Wasserstein GAN (WGAN, 2017) [2]

1 Remove log in loss functions. Remove sigmoid in D.

2 Weight clipping



Introduction Method GAN Evolution GAN Zoo and Applications Takeaways and more

Spectral Normalization for GAN (SNGAN, 2018) [16]
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GAN Zoo and Applications

Conditional image generation

Image to Image translation

Super-resolution

Text to Image

Image Inpainting

Predicting Next Video Frame

Text generation
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GAN Zoo
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CGAN, ACGAN
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InfoGAN, SAGAN
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Image-to-image translation with conditional adversarial
networks (2016)
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High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs (2017)
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StarGAN: Unified Generative Adversarial Networks for
Multi-Domain Image-to-Image Translation (2017)
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Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks (2018)
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A Closed-form Solution to Photorealistic Image Stylization
(2018)
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Image Super-Resolution
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Image Inpainting
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StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Networks (2017)
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Predicting Next Video Frame
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Text generation

SeqGAN (SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient. Yu et al. 2017)

MaliGAN (Maximum-Likelihood Augmented Discrete Generative
Adversarial Networks. Che et al. 2017)

RankGAN (Adversarial Ranking for Language Generation. Lin et al.
2017)

TextGAN (Adversarial Feature Matching for Text Generation. Zhang
2017)

GSGAN (Gans for sequences of discrete elements with the
gumbel-softmax distribution. Kusner 2017.)

LeakGAN (Long Text Generation via Adversarial Training with Leaked
Information. Guo 2017)

MaskGAN: BETTER TEXT GENERATION VIA FILLING IN THE
(Fedus 2018)
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Takeaways

GAN: Generative Adversarial Network

GAN is good, but training it is hard

Name is important!

painting with a GAN
this cat does not exist

this person does not exist
this airbnb does not exist

http://www.youtube.com/watch?v=IB_ADssBomk&t=22m54s
http://gandissect.res.ibm.com/ganpaint.html?project=churchoutdoor&layer=layer4
https://thiscatdoesnotexist.com/
https://thispersondoesnotexist.com/
https://thisairbnbdoesnotexist.com/
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Further readings

NIPS 2016 tutorial: Generative adversarial networks.

ICCV 2017 Tutorial on GANs.

CVPR 2018 Tutorial on GANs.

really-awesome-gan

https://arxiv.org/abs/1701.00160
https://sites.google.com/view/iccv-2017-gans/schedule
https://sites.google.com/view/cvpr2018tutorialongans/
https://github.com/nightrome/really-awesome-gan#applied-other
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[1] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks.
arXiv preprint arXiv:1701.04862, 2017.
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