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Data Considered for Sharing Voter Registration Records (Identified Resource)
Age ZipCode Gender Diagnosis Birthdate ZipCode Gender Name
15 00000 Male Diabetes / 2/2/1989 00001 Female Alice Smith
21 00001 Female Influenza / 3/3/1974 10000 Male Bob Jones
36 10000 Male Broken Arm (__/ 4/4/1919 10001 Female Charlie Doe

91 10001 Female Acid Reflux

Linking two data sources to identity diagnoses.

Figure: (Department of Health & Human Services) De-identification of sensitive information?.
Dataset on the left is released without Name. Using another public dataset on the right, we
can recover the names in the anonymized dataset.

"https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/

de-identification/index.html
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https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html

Table: Percentage of reconstructed records that exactly agree with the original Census Edited
File on location, sex, age, race, and ethnicityz.

Agreement Rates

Published 2010 Census Tables (swapping) 46.5%
Disclosure Avoidance System (differential privacy) 15.7%

https://www2.census.gov/about/partners/cac/sac/meetings/2022-03/

presentation-reconstruction-and-reidentification-of-the-dhc.pdf
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Figure: Model inversion attack (MIA) results on non-private model trained on Faces94 dataset
and differentially privately (DP) trained models (left is record-DP, and right is class-DP)3.

3Zhang, Qiuchen, et al. "Broadening differential privacy for deep learning against model inversion

attacks." 2020 |IEEE International Conference on Big Data (Big Data). IEEE, 2020.
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Statisticians!
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papers on DP+STAT.)

7/50


https://github.com/Zhanyu-Wang/Awesome-Differential-Privacy/blob/main/README.md#awesome-differential-privacy-for-statisticians
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Figure: The output of the mechanism is roughly the same (approximately indistinguishable)
when the input data is slightly changed. This is required for all datasets as input.
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» A mechanism M is p-Gaussian DP (Dong, Roth, and Su, 2022, ;-GDP) if for any
two datasets D, D’ differing in one entry, the hypothesis test, using output of M,
Ho:Z ~ M(D),Hy:Z~ M(D')is than
Ho:Z ~ N(0,1),H; : Z ~ N(u,1).

o
-
— 1-GDP
2 A\ - - Is1-GDP
_ ‘\ © = Not1-GDP
g o |\ Not 1-GDP
0] © N
1 = N
M(D) M(D) § g., .\\
N \.\\\\
o \\,.
o =
o T T T T

type | error

» (Our methods also apply to other DP notions like (g,6)-DP or Rényi DP, etc.)
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> Sensitivity: (largest impact from one individual) The sensitivity of g(-) is

A(g) > sup ||g(D) — g(D')|, ,

where the supremum is over D, D’ differing in one entry.

» Gaussian Mechanism: (add noise to protect privacy) If g has sensitivity A(g), then

2
(D) = (0) + eor. con ~ o (2E)))

satisfies u-GDP. (Transparency) DP mechanisms are also released for validation.

» Composition: (more release —» less privacy) If My and M, are p1-GDP and
pa-GDP, respectively, then the joint release (My, My) is \/u3 + u3-GDP.
> Post-processing: (forestall all attackers) If M(-) is u-GDP, then ¢(M(-)) is u-GDP.
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SCIENCE ADVANCES | RESEARCH ARTICLE

SOCIAL SCIENCES

The use of differential privacy for census data and its
impact on redistricting: The case of the 2020 U.S. Census

ChrlstopherT Kenny', Shiro Kuriwaki?, Cory McCartan®, Evan T. R. Rosenman®,
Tyler Simko', Kosuke Imai"*

A d Scwnce

“We find that the [Disclosure Avoidance System]
DAS systematically undercounts the population in
mixed-race and mixed-partisan precincts, yielding
unpredictable racial and partisan biases.”
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Figure: Mortality risk (relative to current clinical practice) and VKORC1 genotype disclosure

€ (privacy budget)

risk of DP linear regression used for Warfarin dosing®.

*Fredrikson, Matthew, et al. "Privacy in pharmacogenetics: An End-to-End case study of
personalized warfarin dosing." 23rd USENIX security symposium. 2014,

Disclosure Risk (AUCROC)
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Quantify the uncertainty of the DP output by its sampling distribution.
Estimate the sampling distribution under DP — DP statistical inference.
Focus on frequentist approaches.

» Model-free. (Part I)

» Finite-sample valid. (Part II)

» Optimal. (Part III)
» Usable when we cannot choose the DP mechanism. (Part Il & I11)
> E.g., post-process the release census data.
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Motivations:

» Develop a DP mechanism for non-parametric inference.
» Build a DP mechanism to enable bootstrap.

> Perform private inference for quantile regression.

®Wang, Zhanyu, Guang Cheng, and Jordan Awan. "Differentially Private Bootstrap: New Privacy

Analysis and Inference Strategies." arXiv:2210.06140 (2022). This work is under review by JMLR.
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Related Work

Existing privacy guarantees for DP Bootstrap are incorrect, and their confidence
intervals have under-coverage.

DP Bootstrap

Brawner and Honaker (2018); Koskela et al. (2020)
Balle et al. (2018)

DP Parametric Bootstrap

Du et al. (2020); Ferrando et al. (2022); Alabi and Vadhan (2022)
Bag-of-little bootstrap

Evans et al. (2023); Covington et al. (2021)
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> The naive sensitivity is very large = Need to add very large noise for DP.

D:

D"

2eg

el

Bootstrap >g ( )
estimates

a(

Add noise
for DP

> On average, the sensitivity is about the same as without Bootstrap.

Theorem: DP Bootstrap Privacy Analysis

X

X’

> If Mis f-DP, M o bootstrap is foot-DP: fhoot is a tight exact lower bound.

> If M is u-GDP, M o bootstrap is approximately (\/2 — 2/e) u-GDP from
the above f,o0t result when #bootstrap estimates — co. (/2 —2/e ~ 1.125)

» By composition, running B times for B estimates is ( (2— 2/6)3) u-GDP.
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> Sampling distribution is affected by the added
noises for DP.

M o boot(D) = g(boot(D)) + &pp

Use deconvolution to recover the distribution of bootstrap estimates from
B DP bootstrap estimates and the distribution of added noises.

150 Sampling distribution estimates

%‘ 100 deconvolved private bootstrap
é 50 1 —— non-private bootstrap
O B

private bootstrap
0.4 0. 0.520.48 0.50 0.520.48
theta

Construct DP confidence intervals using quantiles of deconvolved distribution.
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» Using the 2016 Canada Census Public Use Microdata, we build 90% Cls for the
slope in the quantile regression between market income & & shelter cost #5}.
The first DP inference method for quantile regression.

>

Q

Cl width

> For small sample size, DP Cls are a bit wider and more conservative than non-DP;

» Cls never contain 0 — significant dependence between & & 4.
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Contributions:

1. Propose and analyze a non-parametric DP bootstrap framework.

2. The first to perform private inference in quantile regression.

Limitations:

1. Bootstrap is an asymptotic method.
2. Determining the optimal choice of B is difficult (larger B = more noise & signal).

3. Deconvolution is limited to additive noise mechanism (e.g., Gaussian Mechanism).
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Motivations:

> Finite-sample valid coverage/type | errors.

> A general framework that can be used without altering DP mechanisms.

» The privacy mechanism and data generating model are often easy to sample from,
enabling simulation-based inference. Our method is inspired by Xie and Wang
(2022).

®Awan, Jordan, and Zhanyu Wang. "Simulation-based, Finite-sample Inference for Privatized

Data." arXiv:2303.05328 (2023). This work is under major revision by JASA.
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Example: location-scale normal. Observe D := (xq,...,X,) " N(u*, 0*?).
. - s 1 n 2 1 n )2
» Non-private statistic: ( m(D) := =31 x;, n°(D) :== =3 >211 <X,’ - X) .

> Private statistic, (v/2¢)-GDP. Ny, N> i N(0,1), clamp{ (x) := max(min(x, U), L).

_ . RY
(an(D) =m (clampf(D)) + UTLNL n2(D) = n? (clampﬂD)) + (UnEL)NQ>.

n?(D) (D)
1.2 4 1.2 4
*
0.9 A 0.94
0.6 - 0.6 4 .

08 09 10 11 12 08 09 10 11 12

m(D) m(D)
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Related Work

Standard techniques are inapplicable or give poor results.

Likelihood-based inference (Williams and McSherry, 2010)
Asymptotics (Wang et al., 2018)

Promising directions:

Parametric bootstrap

Du et al. (2020); Ferrando et al. (2022); Alabi and Vadhan (2022)
New asymptotics

Wang et al. (2018, 2019)
Bayesian inference via data augmentation MCMC

Ju et al. (2022)

Repro sample (Xie and Wang, 2022) is for likelihood-free simulation-based inference.
23/50



Privacy guarantee 1-GDP 0.5-GDP 0.3-GDP 0.1-GDP
Coverage 0.803 0.806 0.804 0.819

Table: Private 90% confidence intervals by NOISYVAR+SIM (Du, Foot, Moniot, Bray, and
Groce, 2020) for the population mean of N(0.5,1). The sample size is 10000.

Sample size 100 200 500 1000 2000 5000
Type l error 0.017 0.045 0.118 0.186 0.361 0.674

Table: Private hypothesis testings (level 0.05) using DP Monte Carlo tests (Alabi and Vadhan,
2022) on Hp : 7 = 0 and Hj : 57 # 0 with a regression model Y = 55 + X5 + € under
1-GDP.
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Example (Nonprivate Location Normal)

Xt Xy N(6*,1). Observe the statistic s*

= X.
z =Y 5 z /2
> A (1 — «a)-prediction interval for s* is B, (0*) = { 1 , 0" + 1ﬁ'7}
0, e
» The confidence interval is - o Ba
‘I:a_\ RREIREE .’.’,__',/’7,:’\\7\\7\—\\\
//’ _",\.-\‘ | A B \
Fa(s*) = {0|s* € B.(0)}) G I SR
A 7 ’ \\—_—:Z\’\/A,’/
_ A-qa/2 _  ZA-qa)2 AR ! b
= |X— 2 %+ 2 .
6, s

A confidence set I, (s*) can be constructed by inverting a prediction set B, ().
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Data-generating model:
D* = Gdata(e*u Udata)-

> 0% is unknown, Ugata ~ Fdata 1S @ random seed, Ggata is @ deterministic function.

» D" :=(x1,...,%n) i N(u*,0*?) < D* == p* + o*u, u~ N(0, lhxn).

Private statistics:
* L *
s = Gprivacy(D 7uprivacy)-

» DP mechanism Gprivacy contains extra uncertainty Uprivacy ~ Fprivacy.
> 2 5% = g(D*) + Uprivacy-

Combine them and write the generating equation as s* g G(6*, u).

This setup (and our method) applies to all settings with low-d summary statistics s*.
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> Simulate new random seeds u; S P and fix them. Let si(0) = G(6, uj).
> Let S(0) = {s*,s1(0),...,sr(0)}. Then, S(0*) is a set of exchangeable r.v.s.
> 5i(0) ~s" = 0~ 0" Define Ts(s) as the “closeness" between s and S.

; ) . Tay Ty T T,
> Ts(s*), Ts(s1(67)), - .-, Ts(sr(07)) L@ @ Ly

exchangeable w/ order statistics T(‘;;. event 1 [@ OO - O]
event 2 [O @ O O]

P (TS(G*)(S*) € |:T(9(:(R+l)+1)7 T(QR*+1):|> >1—q. :
eventR+1[© O O @]

larger T = 5;(0) closerto s* = better 8

Bq

> For general 0, define B, () as
X 0
{TS(@)(S ) € [T(ea(R—&-lH-l)’ T(R+1)”-

> To = {0 ] 1(Ba(60)) = 1} is a
(1 — a)-confidence set for 6*. e
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Theorem: Confidence set from simulated (repro) samples

Set S = (s, 51(0),...,sr(0)) and { (i )}R+ be order statistics of
T(s%S), T(s1(0):S),- .., T(sr(0):S),

L R+1
where T is permutation-invariant in S. Then {T(ei)}. L are exchangeable. If lower
=
values of T indicate unusual data points, then, a (1 — «)-confidence set is

Fa(s*0) = {0] T(s:S) € [Tlamanyny Tlrin) -

Key insights:

1. Include s* in S to ensure exchangeability from permutation-invariance.

2. Prediction set from order statistics, like conformal prediction (Vovk et al., 2005).

28/50



> Most statistical depths are permutation-invariant, and unusual points have lower
depth, e.g., Mahalanobis depth: T(s;S) = {1 +(s— ,us)TZs_l(s — /,Ls)} 7 where
(s, Xs) is sample (mean, covariance) of S.

» Comparing different depths with s* := (%(D), HE(D)) = (1,0.75).

Mahalanobis depth (area 0.41) Simplicial depth (area 0.52) Spatial depth (area 0.42) Tukey depth (area 0.59)
2.0
5 1.5
1.0
0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00
1]
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P> We can leverage exchangeability to derive p-values as well.

Theorem: Hypothesis testing p-value

If T is a depth function taking value in (0, 1), then

p= %4_1 Lseugo [# {i | T(e,-) < T(s% S)} + T(s*;S)]J

is a valid p-value for Hy : 6* € ©q.

30/50



The main competitor for general frequentist
inference for privatized data is the parametric
bootstrap (PB).”

» Du et al. (2020); Ferrando et al. (2022);
Alabi and Vadhan (2022).

PB uses a parametric model for inference,
while Repro uses a data-generating equation.
However,

> With a biased estimator, PB can give
inaccurate inferences.

> PB lacks finite sample guarantees.

"Figure credit: Boos, Dennis, and Leonard Stefanski. “Efron’s bootstrap.” Significance (2010).
31/50



» Suppose that D := (x1,...,Xpn), X;i g N(u*,c*). Build Cls for p* and o*.

» True parameter 0* == (", 0").

» DP statistic s := <ﬁ7,;)§> satisfies (1/2¢)-GDP.

iid

m(D) := m (clampf(D)) + %=L Ny, n?(D) := n* (clamp{(D)) + W=D, where Ny, N> < N(0,1),

clamp?(x) := max(min(x, U), L).

Method (95% C1) Coverage Average width
ﬂ* O_* ﬂ* 0_*
Repro Sample 0.989 (0.003) 0.998 (0.001) 0.599 (0.003) 0.758 (0.005)

Parametric Bootstrap  0.688 (0.015) 0.003 (0.001) 0.311 (0.001) 0.291 (0.001)
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» This problem setting is used by (Alabi and Vadhan, 2022).
> Test Hy: 57 =0and Hy : 7 #0 with Y = 5 + X3] + €.
> True parameter 0* := (37, 55, E[X], Var(X), Var(e)).
> DP statistic s := (>:<x2f/x~yy2> satisfies 1-GDP:

Set clamp parameter to be A, [x,-]ﬁA = max(min(x, A), —A).

5.1 S
72[]” G Z NET
= X:':f 0 'A22 2A A
Y=1 Z[]A+ /\[) Y n;[IYILA +(,u/\/§)nN7
}% = %Z [y,-Q]OA2 + (u/?/g)n/v& where N, i N(0,1).

i=1

33/50



» Compare rejection probabilities (level 0.05) to PB (Alabi and Vadhan, 2022).

clamp

clamp

Larger
noise

n
=3
@
5
=4
—
n
—
<
~
<
0
<
o
—

0.987

h

method = Repro Sample (betal=1)

1, i

0.883/0.989/0.999| 1 i

0:82310.957(0.996/|0.999| 1

0.718 0.8420.957 0.987/0.993

0.629 0.78 0.898 0.961/0.982 1

(]
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Contributions: Expand Repro for finite-sample inference for privatized data.

1. We ensure valid coverage/type | errors, even accounting for Monte Carlo errors;
2. Our method is post-processor and can be applied without additional DP budget.

3. We apply it to many private inference problems and compare it to other methods.

Limitations:

1. Confidence set may be discontinuous.
2. Often conservative.
> Using pivotal summary statistics gives better performance, e.g., in logistic regression.

3. Optimizing over the nuisance parameters is computationally expensive.
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Motivations:

> Repro method is over-conservative and has no optimality guarantee.
> Existing parametric bootstrap (PB) gives biased results due to clamping.

> Need an estimator for PB: consistent & achieving the optimal asymptotic variance.

8Wang, Zhanyu, and Jordan Awan. "Debiased Parametric Bootstrap Inference on Privatized Data."

This work is presented in TPDP 2023 and under preparation for journal submission.
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Example: location-scale normal. Observe D := (xq,...,X,) " N(u*, 0*?).
. - 1 n 2 1 n )2
» Non-private statistic: ( m(D) := =31 x;, n°(D) :== =3 >211 <X,’ - X) .

> Private statistic, (v/2¢)-GDP. Ny, N> i N(0,1), clamp{ (x) := max(min(x, U), L).

_ . RY
(an(D) =m (clampf(D)) + UTLNL n2(D) = n? (clampﬂD)) + (UnEL)NQ>.

n?(D) (D)
1.2 4 1.2 4
*
0.9 0.94
0.6 - 0.6 4 .

08 09 10 11 12 08 09 10 11 12

m(D) m(D)
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T A N
» D ~ F(x|0*) with distribution F, 0" |=| 00)
true parameter 0*. \ /m_
Compute summary statistic s(D). D Dy D, - Dg
» Parameter of interest 7 := 7(6%). v v v v
A S 51 Sy Sp
» Estimate 6%, 7* by 0(s), 7(s). v v
> Let Dp ~ F(x[0(s)). sp = s(Dp)- ¢+ | Z(s) | | T(s1) 7(s0) Z(sp)
The PB estimator of 7% is %(Sb)- true \estimate/ \_ parametric bootstrap estimates )
» Distributions of \/n(#(D) — 7*) and \/n(#(D,) — 7(D)) are H,(6*) and H,(A(D)).
» PB consistency: H,(A(D)) L Hn(60*). = Asymptotically valid Cls & HTs by PB.

When (D) in PB is biased, the consistency may not hold.
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Related Work

Naive usage of PB under DP gives biased results.

Parametric bootstrap

Du et al. (2020); Ferrando et al. (2022); Alabi and Vadhan (2022)
Bag-of-little bootstrap

Evans et al. (2023); Covington et al. (2021)
Indirect inference for bias correction

Gourieroux et al. (1993); Jiang and Turnbull (2004); Guerrier et al. (2019)
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Indirect Estimator (Gourieroux, Monfort, and Renault, 1993)

The privacy mechanism and data generating model are often easy to sample
from, enabling simulation-based inference.

Write the generating equation as s* 4 G(6*%, u).
Fix the randomness {u;} R, in generating s;(0) = G(0, u;).
If si(@) is close to s*, 6 is close to 6*.

Find the 0 generating s;(6) closest to s*. Use ||x||q := vV xT{2x as a metric.

0® 5@
P ’,_f/;,—;;,,\\:\_\\\
R Q N L S /l M
) [ L * SlezInSL S
Ui = argmin ||s* — — Zs,-(@) o* ,/ SRS G

6co R 4 \ :

€ i=1 Q \\\ ‘///
o 0
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Theorem: Indirect Estimator Consistency

1. (Gourieroux et al., 1993) Oinp is a consistent estimator of 6*, and
Vn (91ND - 0*) converges to a known distribution;

2. The parametric bootstrap Cls and HTs based on 9IND are consistent.

> Two levels of simulation in “PB+Indirect Estimator”.
1. 5;(0) used in OinD

2. Sb(éIND) used in PB
> The choice of Q2 determines the asymptotic variance of HAIND.
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Definition (Adaptive indirect estimator)
Let Q = (S(0))~1. S(0): sample covariance matrix of {s;(0)} R ;.

(Intuition: tolerate more difference in more uncertain directions.)

1 R
* = ie
s RES()

OAp1 := arg min
0c©

(seen~*

Theorem: Consistency and asymptotic variance (R — oo)

1. éADI is a consistent estimator of 6*, \/n (éADI - 6*) converges to a dist;

2. The parametric bootstrap Cls and HTs based on fapp are consistent;

3. (Optimal asymptotic variance) For any well-behaved consistent estimator

¥(s), we have Var <nI|_>n;O Vn((s) — 9*)) > Var (nll_>ngo vn (HAADI — 0*))
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Figure: Sampling distributions of different estimates. Vertical line is median, '« is true value.

estimated mean estimated standard deviation

2
] simplified tq E
e adaptive indirect q
0.50 0.75 1.00 1.25 15005 07 09 11 13
Value
Method (95% Cl1) Coverage Average width
wr o uwr o
B (adaptive indirect) 0.959 (0.006) 0.951 (0.007) 0.463 (0.003) 0.580 (0.003)
B (naive percentile) 0.697 (0.015) 0.006 (0.002) 0.311 (0.001) 0.293 (0.001)
B (simplified t) 0.869 (0.011) 0.817 (0.012) 0.311 (0.001) 0.293 (0.001)
B (Ferrando et al., 2022) 0.808 (0.012) 0.371 (0.015) 0.311 (0.001) 0.293 (0.001)
B (Efron’s BC) 0.854 (0.011) 0.042 (0.006) 0.298 (0.001) 0.139 (0.002)
PB (automatic percentile) 0.865 (0.011) 0.126 (0.010) 0.314 (0.001) 0.261 (0.001)
Repro (Awan and Wang, 2023)  0.989 (0.003) 0.998 (0.001) 0.599 (0.003) 0.758 (0.005)
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> Compare

Type |
error

true betal

true betal
1.0 0.8 0.6 0.4 0.2 0.1 0.0

Larger
signal

rejection probabilities (level 0.05) to

method = PB (Naive estimator + F-statistic)

~0.002

0.02

0.035

0.035

0.4 0.2 0.10.0)

"1.0 0.8 0.6

-0.003
-0.018

0.106

0.913

m 0.734

0.194

0.997

- 0.897 | 0.984

0.594 0.843 0.951

0.63 0.78 0.898

method = PB (Indirect estimator + F-statistic)

0.329

1 1
0:99 7| ST

0.988 0.993
0.961 0.982

0.048| 0.04 |0.077 0117'

0.904  0.988

method = Repro

(W FA 0.564 0.836

0.023(0.051 (0.131 JoAE:]

method = PB (Indirect estimator + approximate-pivot)

0.006

0.034

0.041

0.036 | 0.053|0.034 | 0.054 [0.052 | 4 0.06

0.013

0.151

0.039
0.246

0.231

0.356

400 500
sample size

0.053/0.052|0.033|0.051|0.043|0.042|0.042

0.9 -40.073

0.185|0.282 0.59

-40.151

1000 2000 5000 100

200 300 400 500
sample size

1000 2000 5000

- 1.00

-0.05

-0.00

(Alabi and Vadhan, 2022) & Repro.

Rejection probability
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Contributions:

1. Prove consistency of PB (indirect estimator).
2. Propose an adaptive indirect estimator (ADI): consistent (PB), optimal asymp var.
3. Improve state-of-the-art DP PB (validity & efficiency).

Limitations:

1. Computationally expensive.
2. Requires regularity conditions (e.g., smoothness).
3. Additional techniques required for discrete settings (in the thesis).

Compare ADI to Repro: (both simulation-based)

1. Repro is finite-sample valid with almost no assumptions while conservative.
2. ADl is an estimator, asymptotically optimal w/ more assumptions.
3. PB4ADI and Repro are state-of-the-art in different scenarios.
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but restricted in mechanisms;
but conservative;

DP bootstrap:

Repro:
PB+-ADI:

but needs smoothness.

Repro and PB+ADI are general-purpose methods that solve the clamping problem and
outperform (Alabi and Vadhan, 2022) which only focused on linear regression.

DP bootstrap

Repro

PB+ADI

Data generating
equation

DP mechanisms

Inference

Not needed

All (for DP guarantee);
Additive-noise (for inference)

Asymptotic;
often conservative;
requires a point estimator

Needed

Easily sampled

Finite-sample;
often conservative;
no estimator

Needed & Smooth

Easily sampled
& Smooth

Asymptotic;
efficient;
provides an estimator
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Future work
> For Repro and PB+ADI, find an appropriate data generating equation?
> If there is none, consider non-parametric or semi-parametric models.
> Find the DP mechanism giving the optimal summary statistic s for inference?

> For DP Bootstrap, we need more post-processing in addition to deconvolution if
the original mechanism gives a biased estimator.
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Definition ((¢, §)-DP)

A mechanism M : X" — Y is (e,9)-DP if for any neighboring datasets D ~ D' € X",
and any measurable set S C ), the following inequality holds:

Pr[M(D) € S] < e*Pr[M(D’) € S] + 6.
Definition (tradeoff function & f-DP)

Consider the hypothesis test Hy : Y ~ P versus Hy : Y ~ Q. For any rejection rule
(YY), ag is the type | error and f3; is the type Il error. The tradeoff function is

Tp.o(a) = inf{f; | ay < a}.

M is £-DP if Tpypy,m(pr)(cr) > f(c) for any o and datasets D, D’ with D ~ D’

Primal-dual conversion f-DP < (g,6)-DP Ve > 0 with (¢) = 1 + f*(—e®).
> f.5(a) :=max{0, 1 -0 —e°c, e (1 —J — a)}-DP is equivalent to (e, §)-DP.
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> If M randomly releases the output of M with probab|I|ty pi, and M; is £;-DP for

i € [k], then M is fiix-DP. finix = (

> p=(p1,
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» Consider the Gaussian mechanism M with 1-GDP (dashed curve). M o boot

satisfies foot-DP (solid opaque curve). The transparent curves are for testing

M(D) vs M(D') where D = (a,0,...,0), D' =(a—1,0,...,0),
M(D) =137 x5 +& D= (xi,x,..., %), £ ~N(0,5).

» The dashed and dotted dashed lines are misused as lower bounds in Brawner and
Honaker (2018) and Koskela et al. (2020).

a b 1009,

1

! .
= ~ 075{ Tradeoff functions
e o N
5] 5 N a=0.0 a=0.8
= = 0.50 N _ B
[} o S a=0.2 a=1.0
s S AN a=04 - - 1-GDP
= Fo2s Sl -

s o a=0.5 — Our lower bound
0.00 T a=0.6 1.125-GDP
000 025 050 075 1.00 000 025 050 075 1.00
Type | error Type | error
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Unbiased estimate of 0

Variance of the estimate

Sample mean (non-private):

0 =X

Sample mean (Gaussian mechanism):
By = X + ¢ where £ ~ N(0, ﬁ)
Bootstrap (non-private):

03 =X

DP bootstrap (Gaussian mechanism):
Oy = X’ where &, ~ N(0, w)

222

A o2
Var(th) = ==

R 2 L
Var(62) = -+ W2

~ o2
Var(fs) = -*

f‘d,l‘(é4) _ 1+1/B;1/(n3)a_)2( + (2“—22’1/23)

Unbiased estimate of Var(d;)

Variance of the estimate

2

Var(f1) = f

Var(fy) = X 4 i where £ ~ N(0, )
Var(d3) = 2583

Var(la) = i e - G2

Var(Var(f1)) € O(%)

Var(Var(d,)) € O(% + )
Var(Var(fs)) € O(:45 + %)
Var(Var(fs)) € O(:45 + e
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DP Bootstrap: Deconvolution

We choose to use deconvolveR (Efron, 2016) based on Empirical Bayes since it
performs the best in our settings without tuning its hyper-parameters.

For the model Y = X + e, deconvolveR assumes that Y and X are distributed
discretely with the sizes of their supports |V| = k and |X| = m.

It models the distribution of X by f(a) = e®*/c(a) where Q is an m x p
structure matrix with values from the natural spline basis with order p, ns(X, p),
and « is the unknown p-dimensional parameter vector; c(«) is the divisor
necessary to make f sum to 1.

The estimation of the distribution of X is obtained through the estimation of «:
It estimates v by maximizing a penalized log-likelihood m(a) = I(Y; ) — s(«a)
with respect to o where s(«) is the penalty term, and /(Y; «) is the log-likelihood
function of Y derived from f(«) and the known distribution of e.
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Table: Coverage and width of Cls with different privacy guarantees. Confidence level is 90%.

The standard error estimated from 2000 replicates is in parenthesis. B oc ny?.

Privacy Method Coverage Cl width
N/A Bootstrap (B=2000) 0.905 (7e-3) 0.014 (6e-6)
1.CDP DP bootstrap (B=2000) 0.896 (7e-3) 0.014 (1le-5)
i NoisyVar 0.803 (9e-3) 0.011 (7e-6)
05.cpp  DP bootstrap (B=500)  0.898 (7e-3) 0.014 (2¢-5)
= NoisyVar 0.806 (9e-3) 0.011 (7e-6)
0.3.GDP DP bootstrap (B=180)  0.901 (7e-3) 0.015 (3e-5)
a NoisyVar 0.804 (9e-3) 0.011 (7e-6)
0.1.GDP DP bootstrap (B=20) 0.962 (4e-3) 0.020 (1e-4)
- NoisyVar 0.819 (9e-3) 0.012 (7e-6)

56/50



> Coverage check for all confidence levels.

1.00
0.75
X050
('R
0.25
0.00

mu=1

mu=0.5

mu=0.3

0.5

0.5

1.00.0
x=F*(theta)

0.5

1.00.0

0.5

1.0

Inference methods
non-private bootstrap (B=2000)
deconvolved private bootstrap (B=2000)
- deconvolved private bootstrap (B=500)
- - deconvolved private bootstrap (B=180)

deconvolved private bootstrap (B=20)
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Repro: Over-coverage

Relative width due to over-coverage for the normal mean with known variance, when the
nominal level is 1 — o = 0.95, and the over-coverage level is 1 — a* = (1 — a)/¢.

Dimension d 1 2 5 10 100 1000
Relative width 1 1.14 131 143 1.77 207

95% confidence intervals for private Bernoullis with unknown n. The first row uses
Mahalanobis depth, and the second row uses an approximate pivot. For both intervals, an
initial (1 — 107*)-Cl for n is used to reduce the nuisance parameter search. Parameters for the
simulation are n* = 100, p* =0.2, e =1, R = 200.

Coverage Width

Mahalanobis Depth  0.980 (0.004) 0.197 (0.001)
Approximate Pivot  0.949 (0.007) 0.163 (0.001)
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method = Repro Sample

€ 01 -- 03 ----1---3 10 40985 | 0.981 | 0.995 | 0.997 | 0.997 [ 190
M 0.992 | 0.994 | 0.997 | 0.994 | 0.997
Repro Sample DP-CI-ERM w 240995 | 0.993 | 0.997 | 0.997 | 0.999
i 2 0.997 | 0.995 | 0.997 | 0.997 | 0.999
izz_ r ‘ N ‘||~ .- ; 0.9‘94 0.?97 0.9‘96 0.9‘96 ‘1 5
1 S method = DP-CI-ERM -095 g
% 07 l\'\ . \k\ r o] BN N ] 2 {0756 | 0.779 [ 0.804 | 0.769 | 0.796 8
g 297 ke -l \\\ RN | B “1~. M. 0811 | 0.816 | 0.796 | 0.769 | 0.813
1.04 T !ﬁ;!_.;_ l | o \‘l wS 40835 | 0.81 | 0.808 | 0.824 | 0.862
0.5 =1 gl 2 {0851 | 0.864 | 0.898 | 0.924 | 0.934
031, T T T T T T T T t g— 0.912 | 0.933 | 0.946 | 0.947 | 0.946
100 200 500 1000 2000 lQO 200 500 1000 2000 160 260 560 10‘00 20‘00 - 0.00
sample size sample_size

Figure: Width and coverage for the confidence intervals of 3; in logistic regression with repro

and DP-CI-ERM Wang et al. (2019). Parameters for this simulation are a* = b* = 0.5,
B¢ =0.5, Bf =2, R =200, o = 0.05, and the results were averaged over 1000 replicates.

A A ol ute €q
>(D: = i D ) — ). f(ue, A) x — .
de(D: u) = arg i (c(o, )+ Lo+ ) (u: )xexp( x \ux>
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Table: Average width for the confidence intervals of 31 in logistic regression using repro with
the Mahalanobis depth on different summary statistics s. Tyt 1=

J/n (7(3*; Dy-) + C()\'(V)>75 ((H* +2) fpp — Hﬁ) . H* = 3(i(0op; D, ) +1(8%; Do),

s = (dpp, 2, 22) n =100 n = 200 n =500 n = 1000 n = 2000
e=0.1 10.430 (0.089) 19.252 (0.099) 17.306 (0.109) 12.870 (0.072) 8.622 (0.077)
=03 18.877 (0.091) 14.335 (0.114) 9.878 (0.064)  3.975 (0.064) 1.291 (0.007)
e=1 10.762 (0.057) 7.727 (0.073)  1.862 (0.014)  1.003 (0.004) 0.630 (0.002)
e=3 5.678 (0.071)  2.287 (0.016)  1.176 (0.004)  0.801 (0.002)  0.560 (0.001)
e=10 3.426 (0.030)  1.931 (0.010)  1.115 (0.004)  0.781 (0.002)  0.553 (0.001)
s = (Tpivot, %, 22) n = 100 n = 200 n = 500 n = 1000 n = 2000
=01 10.240 (0.108)  19.337 (0.097) 18.487 (0.105) 14.789 (0.106)  7.000 (0.097)
=03 10.243 (0.087) 15533 (0.134)  8.234 (0.091)  2.577 (0.032) 1.148 (0.005)
e=1 9.939 (0.084)  4.613 (0.062) 1594 (0.008)  0.955 (0.003) 0.617 (0.002)
=3 3.300 (0.033)  1.905 (0.009)  1.118 (0.003) 0.782 (0.002) 0.553 (0.001)
=10 2381 (0.012)  1.665 (0.006) 1.058 (0.003) 0.762 (0.002) 0.545 (0.001)
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> Private statistics:

s :=argminp(B3; D,upp), D := G(6%; u).
B

» DP mechanism p contains extra uncertainty upp ~ Fpp,
» e.g., Gaussian Mechanism, Objective perturbation.

> Fix the randomness (u”, ufyp) in generating D"(#) := G(¢, u") and
s"(0) == argﬁmin p(B3; D"(0), upp).

» Find the 0 generating s"(#) most similar to s.

Definition (Indirect estimator) 0% S(/Z)/_,_-,::Q B
R /é TTTETH T ’\ \’;";’L/:/S:\\; \/\\ \/
Oixp = argmin ||s — 1 Z s"(0) ¥ r %*
00 R~ Q.
‘ oM ‘ s®
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» pn(5; D, upp) L poo(B; Fu, Fop, 6%),

> b(0) := argmaxgcppoo(B; Fu, Fop,0), B* = b(0*),

% . Ob(0*) s . 0%poo(B*;Fu,FDP,0*)
> B =T = = m e

> /(2@ Duee)y S L Qy— Q.

Let v; © F, pp, T := Var[(J*) L] = Var ( lim /a(s — b(0*))), Q" := (¥*) L.

R
\/B(éIND — 9*) i) ((B*)TQB*)_l (B*)TQ(J*)_I <Vo — % Z V,') .

i=1
V(@api —07) S ((B7)TQ7B7) (BT (J) 7 (vo — E(w)).

Var ( lim v/n(0oxp — 0%)) = Var ( lim /n(@apr - 0%)) = ((B*)T(z*)fle*)*l.

lim
n—o0
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> Test statistic 7. Auxiliary scale of test statistic 7.

.\ B
> Let 5(1 be the jth order statistic of {(a)(st(e)}b ;

» Cl for 7(6*) is [?(S) + é(L(B+1)a/2j)&(5)a 7(s) + §(1+B,L(B+1)Q/QD6(S)]
We want to choose 7 and & such that % has mean 0 and variance 1.

> Note that b(6*) = lim,—0 s* and X(0*) = Var (nl|_>rrc1>O Vn(s — b(0*)))

» Let 0 := Oap1, Oy := 0(sp). Set the test statistic as 7(sp) := n1(A(sp)). We use
&(sp) to estimate the asymptotic standard deviation of 7(sp), where

(ss) = }(%@1(9 ((2260) c00200) (22, ))Tf.
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Figure: Comparison of the sampling distribution of the adaptive indirect estimates Gap1 under
different settings of the number of generated samples R = 10, 20, 50, 100, 200 in the normal

distribution setting.
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Figure: Comparison of the sampling distribution of the adaptive indirect estimates Gap1 under

different settings of the clamping parameter U = 0.1,0.5,1,3,5 in the normal distribution
setting.
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