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Outline

Basics of convexity, strong convexity, and smoothness
Smoothness: GD, convergence rate w/ or w/o convexity
Strong convexity: regularization, convergence w/ smoothness
Gradient descent in practice: choosing step-size
General descent: lower bounds, accelerated gradient, stochastic gradient, more
about SGD
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Take-home message: convergence rates and assumptions

Some rules of thumb on convergence rates of f(xt)− f(x∗) (not comprehensive, and
there are other ways).

O(1/t) is often a result by smoothness.
O(1/

√
t) uses Lipschitz (thus ∥∇f(x)∥ = O(1)) in place of smoothness upper

bound on ∥∇f(x)∥. (optimal under Lipschitzness + convexity)
O(1/t2) uses “acceleration,” which is a fancy momentum inside the gradient.
(optimal under smoothness + convexity)
exp(−O(t)) (aka linear convergence) uses strong convexity (or other fine structure
on f, e.g., local strong convexity, regularity condition, Polyak-Lojasiewicz
condition). (optimal under smoothness + strong convexity)
Stochasticity changes some rates and what is possible, but there are multiple
settings and inconsistent terminology.
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Convexity: Intuition and Definition
First intuition: the second order derivative f′′(x) is non-negative.
For high dimension: the Hessian matrix is positive semi-definite.
Important property: Jensen’s inequality
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Convexity: First-order condition

Alternative definition: ⟨∇f(x)−∇f(y), x − y⟩ ≥ 0
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Strong convexity (SC)
First intuition: the second order derivative f′′(x) is positive.
For high dimension: the Hessian matrix is positive definite.

We define f(x) is λ-strongly-convex (λ-SC) when

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ λ

2 ∥y − x∥2, λ > 0

Some alternative definitions
1 f(x)− λ∥x − x0∥2

2/2 is convex. (lower bounded by a quadratic function)
2 ∇2f(x) ⪰ λI.
3 ⟨∇f(y)−∇f(x), y − x⟩ ≥ λ∥y − x∥2

4 f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)− λα(1−α)
2 ∥y − x∥2

Implications of SC
f(y) ≤ f(x) +∇f(x)T(y − x) + ∥∇f(y)−∇f(x)∥2

2λ ; ∥∇f(y)−∇f(x)∥ ≥ µ∥y − x∥
1
2∥∇f(x)∥2 ≥ λ(f(x)− f∗); (∇f(y)−∇f(x))T(y − x) ≤ ∥∇f(y)−∇f(x)∥2

λ

https://xingyuzhou.org/talks/Fenchel_duality.pdf
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Smoothness

It is NOT the smoothness in Mathematics (C∞)
Lipschitzness controls the changes in function value, while smoothness controls
the changes in gradients.

We say f(x) is β-smooth when

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ β

2 ∥y − x∥2, λ > 0

Some alternative definitions
1 β∥x − x0∥2

2/2 − f(x) is convex. (upper bounded by a quadratic function)
2 −βI ⪯ ∇2f(x) ⪯ βI.
3 ⟨∇f(y)−∇f(x), y − x⟩ ≤ β∥y − x∥2 (weaker when not require convexity)
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Illustration of Strong Convexity and Smoothness

http://www.pokutta.com/blog/research/2018/12/07/cheatsheet-smooth-idealized.html
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Smoothness: guaranteed gradient descent
How to use one definition get another?

⟨∇f(y)−∇f(x), y − x⟩ ≤ β∥y − x∥2⇒f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ β

2 ∥y − x∥2

f(y)− f(x)− ⟨∇f(x), y − x⟩ =
∫ 1

0
⟨∇f(x + t(y − x)), y − x⟩dt − ⟨∇f(x), y − x⟩

=

∫ 1

0
⟨∇f(x + t(y − x))−∇f(x), y − x⟩dt ≤

∫ 1

0
tβ∥y − x∥2dt = β∥y − x∥2/2

We can guarantee gradient descent does not increase the objective.
Intuition: the gradient is not changing much, so a small descent step following the
gradient would go down.

Let x′ = x − η∇f(x), η ≤ 2/β

f(x′) ≤ f(x)− ⟨∇f(x), η∇f(x)⟩+ β∥η∇f(x)∥2

2 = f(x)− (η − η2β/2)∥∇f(x)∥2 ≤ f(x)
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Smoothness: convergence to stationary points

Let wi+1 = wi − ηi∇f(x), ηi ≤ 2/β

f(wi+1) ≤ f(wi)− (ηi − η2
i β/2)∥∇f(wi)∥2

f(wT) ≤ f(w0)−
T−1∑
i=0

(ηi − η2
i β/2)∥∇f(wi)∥2

If we set ηi = η as a constant

min
i<T

∥∇f(wi)∥2 ≤ 1
T(η − η2β/2)(f(w0)− f(wT))

Here the best choice is η = 1/β. We have no guarantee about the last iterate
∥∇f(wT)∥: we may get near a flat region at some i < t , but thereafter bounce out.
For gradient flow, we have similar result: infs∈[0,t] ∥∇f(w(s))∥2 ≤ f(w(0))−f(w(t))

t .
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Smoothness: view from approximation

We are using gradient descent because of quadratic approximation

w −∇f(w)/β = argmin
x

(f(w) + ⟨∇f(w), x − w⟩+ β∥x − w∥2/2)

This is also the key component to proximal gradient descent (approximate the
differentiable part and keep the others).
There are also other approaches: e.g., Nesterov-Polyak cubic regularization
guarantees convergence w.r.t. gradient norm O(t−2/3) and the minimum
eigenvalue of Hessian −O(t−1/3) (still could be negative but goes to 0).
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Smoothness with convexity: convergence rate
If we choose η = 1/β and f(x) is convex. Then for any z and sequence (wi)i∈[0,T] by
gradient descent, we have

f(wt)− f(z) ≤ β

2t(∥w0 − z∥2 − ∥wt − z∥2)

Proof:

∥wt+1 − z∥2 = ∥wt − z∥2 − 2
β
⟨∇f(wt),wt − z⟩+ 1

β2 ∥∇f(wt)∥2

≤ ∥wt − z∥2 +
2
β
(f(z)− f(wt)) +

2
β
(f(wt)− f(wt+1))

= ∥wt − z∥2 +
2
β
(f(z)− f(wt+1))

Since f(wt+1) is decreasing w.r.t. t, we take the sum and get the result.
For gradient flow, similarly: 1

2(∥w(t)− z∥2 − ∥w(0)− z∥2) ≥
∫ t

0 (f(w(s))− f(z))ds.
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Smoothness with convexity: convergence rate v2
f(wk+1)− f(w∗) ≤ f(wk)− f(w∗)− 1

2L ||∇f(wk)||2 ⇒ δk+1 ≤ δk −
1
2L ||∇f(wk)||2

Since f(x) is convex, f(wk)− f(w∗) ≤ −∇f(wk)T(w∗ − wk) ≤ ||∇f(wk)|| · ||wk − w∗||

δk ≤ ||∇f(wk)||·||wk−w∗|| ⇒ ||∇f(wk)||2 ≥
δ2

k
||wk − w∗||2

⇒ δk+1 ≤ δk−
δ2

k
2L||wk − w∗||2

Since we have shown that ||wk − w∗|| is monotonically decreasing,

δk+1 ≤ δk −
δ2

k
2L||w0 − w∗||2

= δk(1 − δk
2L||w0 − w∗||2

)

1
δk

≤ 1
δk+1

− 1
2L

1
||w0 − w∗||2

δk
δk+1

⇒ 1
δk+1

− 1
δk

≥ 1
2L

1
||w0 − w∗||2

δk
δk+1

≥ 1
2L

1
||w0 − w∗||2

⇒ δk ≤ 1
1
δ0

+ k( 1
2L

1
||w0−w∗||2 )

= O
(

1
k

)
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GD on Convex function without Smoothness
wk+1 = wk − η∇f(wk);

f(wk)− f(w∗) ≤ ∇f(wk)
T(wk − w∗) =

1
η
(wk − wk+1)

T(wk − w∗)

≤ 1
2η
(
∥wk − wk+1∥2 + ∥wk − w∗∥2 − ∥wk+1 − w∗∥2)

≤ 1
2η
(
η2L2 + ∥wk − w∗∥2 − ∥wk+1 − w∗∥2)

k∑
i=0

f(wi)− f(w∗) ≤ (k + 1)ηL2

2 +
1
2η (∥w0 − w∗∥2 − ∥wk+1 − w∗∥2)

f
(

1
k + 1

k∑
i=0

wi

)
− f(w∗) ≤ 1

k + 1

k∑
i=0

f(wi)− f(w∗) ≤ ηL2

2 +
∥w0 − w∗∥2

2(k + 1)η = O
(

1√
k

)
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Strong convexity

Suppose f(x) is λ-SC, then

∀w, f(w)− inf
v

f(v) ≤ 1
2λ∥∇f(w)∥2

Proof: Use minimizer of quadradit approximation at w

Qw(v) := f(w) + ⟨∇f(w), v − w⟩+ λ

2 ∥v − w∥2.

inf
v

f(v) ≥ inf
v

Qw(v) = f(w)− 1
2λ∥∇f(w)∥2

We can use this as a stopping criterion: stop when ∥∇f(x)∥ ≤
√

2λϵ.
Many software packages use heuristics. Some people just run their methods as long as
possible. In convex cases, sometimes we can compute duality gaps.
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Strong convexity: regularization and boundedness

If we manually enhance strong convexity: fλ(w) = f(w) + λ∥w∥2/2, the new
optimal solution w∗ satisfies

λ

2 ∥w∗∥2
2 ≤ fλ(w∗) ≤ fλ(0) = f(0)

It is now in bounded region and can be used in generalization bounds.
In deep learning people use weight decay, but it isn’t necessary for generalization
(although it helps a lot), and is much smaller than what many generalization
analyses suggest (the new function is still not convex), and thus its overall role is
unclear.
Time Matters in Regularizing Deep Networks
Three Mechanisms of Weight Decay Regularization

1 increasing the effective learning rate,
2 approximately regularizing the input-output Jacobian norm, and
3 reducing the effective damping coefficient for second-order optimization.

https://arxiv.org/abs/1905.13277
https://arxiv.org/abs/1810.12281
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Strong convexity with Smoothness: convergence rate

Suppose f is λ-SC and β-smooth, and GD is run with step size 1/β. Then a minimum
w∗ exists, and

f(wt)− f(w∗) ≤ (f(w0)− f(w∗))exp(−tλ/β),

∥wt − w∗∥2 ≤ ∥w0 − w∗∥2exp(−tλβ).

Proof: (consider β/λ as condition number; use the fact that ∀x ≥ 0, e−x ≥ 1 − x.)

f(wi+1)− f(w∗) ≤ f(wi)− f(w∗)− ∥∇f(wi)∥2

2β ≤ f(wi)− f(w∗)− 2λ
2β (f(wi)− f(w∗))

∥wi+1 − w∗∥2 = ∥wi − w∗∥2 +
2∇f(wi)T(w∗ − wi)

β
+

∥∇f(wi)∥2

β2

≤ ∥wi − w∗∥2 +
2(f(w∗)− f(wi)− λ∥w∗ − wi∥2/2)

β
+

2β(f(wi)− f(wi+1))

β2
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Use Gradient descent in Practice
The worst optimization method in the world. – Aaron Defazio
The condition number only formally makes sense on simple problems (“strongly
convex”). But we often talk about “poorly conditioned” and “well conditioned”
problems in machine learning informally.

https://drive.google.com/file/d/1pwlGN6hDFfEYQqBqcMjWbe4yfBDTxsab/view
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Choosing the Step-Size in Practice
In practice, you should never use η = 1/β: hard to compute β and this choice of
η is usually too small (small for worst case).
To approximate β:

start with a small guess β̂, e.g., β0 = 1
Double β̂ if below is not satisfied

f(wk −∇f(wk)/β̂) ≤ f(wk)− ∥∇f(wk)∥2/(2β̂).

Worst case: β ≤ β̂ ≤ 2β; Good case: β̂ << β and you get great speedup.
Another way: backtracking line-search for step-size α:

start with a large guess α
Decrease α until if Armijo condition is satisfied (often choose γ = 10−4)

f(wk − α∇f(wk)) ≤ f(wk)− αγ∥∇f(wk)∥2 for γ ∈ (0, 1/2].

Good codes usually only try 1 value per iteration.
Even more fancy line-search: Wolfe conditions. Check Nocedal and Wright’s
Numerical Optimization book.

https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L4.pdf
https://link.springer.com/book/10.1007/978-0-387-40065-5
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Lower bounds for first-order methods

Black Box Model: ∀i, xi ∈ x0 + span{∇f(x0), . . . ,∇f(xi−1)}
Let k ≤ d (dimension) then there exists a convex L-Lipschitz function f such that

f(xk)− f(x∗) ≥ RL
2(1 +

√
k + 1)

dimension dependent version
(Nemirovski, Yudin ’83) There exists an L-smooth convex function f such that

f(xk)− f(x∗) ≥ 3L
32

∥x0 − x∗∥2

(k + 1)2

Let κ = L/µ > 1. Then there exists an L-smooth µ-strongly convex function f

f(xk)− f(x∗) ≥ µ

2

(√
κ− 1√
κ+ 1

)2(k−1)
∥xk − x∗∥2

http://www.stat.cmu.edu/~larry/=sml/optrates.pdf
https://papers.nips.cc/paper/2009/file/2387337ba1e0b0249ba90f55b2ba2521-Paper.pdf
http://www.stat.cmu.edu/~larry/=sml/optrates.pdf
http://mitliagkas.github.io/ift6085/ift-6085-lecture-4-notes.pdf
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Accelerated gradient methods
Heavy-ball method (Boris Polyak): wt+1 = wt − ηt∇f(wt) + θt(wt − wt−1).
Yurii Nesterov’s accelerated gradient methods (’83)

xt+1 = yt − ηt∇f(yt),

yt+1 = xt+1 +
t − 1
t + 2(xt+1 − xt).

Convergence rate: suppose f is convex and L-smooth, ηt = 1/L,

f(wt)− f∗ ≤ 2L∥wt − w∗∥2

(t + 1)2 .

The insight is from a second-order ODE and corresponding Lyapunov function

Ẍ(τ) + α

τ
Ẋ(τ) +∇f(X(τ)) = 0, α ≥ 3 ⇒ f(X(τ))− f∗ ≤ O(

1
τ2 ).

Fast iterative shrinkage-thresholding algorithm FISTA (Beck, Teboulle ’09)
When a certain criterion is met, restart running FISTA (O’Donoghue, Candes ’12)

http://www.princeton.edu/~yc5/ele522_optimization/lectures/accelerated_gradient.pdf
https://epubs.siam.org/doi/abs/10.1137/080716542
https://arxiv.org/abs/1204.3982
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General descent
We first consider a generalization of gradient descent (e.g., SGD or coordinate descent)

wi+1 := wi − ηgi

Assume f(x) is convex. We have
∥wi+1 − z∥2 = ∥wi − z∥2 + 2η⟨gi −∇f(wi) +∇f(wi),wi − z⟩+ η2∥gi∥2

≤ ∥wi − z∥2 + 2η(f(z)− f(wi) + ⟨gi −∇f(wi),wi − z⟩) + η2∥gi∥2

Let ϵi := ⟨gi −∇f(wi),wi − z⟩. η = c√
t , G := maxi ∥gi∥2,D := maxi ∥wi − z∥. We have

f
(

1
t

t−1∑
i=0

wi

)
≤ 1

t

t−1∑
i=0

f(wi) ≤ f(z) + ∥w0 − z∥2

2c
√

t
+

cG2

2
√

t
+

1
t

t−1∑
i=0

ϵi.

Averaged iterates are often suggested in theory, but rare in applied classification
(loss is not convex). If t not fixed in advance, we can use ηi = c/

√
1 + i.

|ϵi| ≤ 2∥∇f(wi)∥∥wi − z∥ ≤ 2GD. We need concentration of the sum.
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Stochastic gradients

Define the standard stochastic gradient oracle:

E[gi|w≤i] = ∇f(wi).

One way is to use one sample (x, y) from population to calculate the loss and
gradient. If each time the sample is new, then it is SGD on population risk; If the
sample is always from training data, then it is on empirical risk.
Stochastic minibatch gradient descent is standard for deep networks. However,
there is a delicate interplay between step size, minibatch size, and number of
training epochs (Shallue et al. ’18).
Matus Telgarsky said: There are many deep learning papers that claim SGD does
miraculous things to the optimization process. Unfortunately, none of these seem
to come with a compelling and general theoretical analysis.

https://www.jmlr.org/papers/volume20/18-789/18-789.pdf
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Stochastic gradients

Azuma-Hoeffding inequality: suppose Zi is a martingale difference sequence
E[Zi|Z<i] = 0 and E|Zi| ≤ R. W.p. at least 1 − δ, we have

∑t
i=1 Zi ≤ R

√
2t log(1/δ).

We know E[ϵi|w≤i] = ⟨E[gi −∇f(wi)|w≤i], z − wi⟩ = 0 and E|ϵi| ≤ 2GD.
Therefore, we let c = D/G, and w.p. at least 1 − δ, we have

f
(

1
t

t−1∑
i=0

wi

)
≤ 1

t

t−1∑
i=0

f(wi) ≤ f(z) + DG
2
√

t
+

DG
2
√

t
+

2DG
√

2 log(1/δ)√
t

.

Without Azuma-Hoeffding we still can get a bound on the expected average error:

E

[
1
t

t−1∑
i=0

f(wi)

]
≤ f(z) + ∥w0 − z∥2 + G2

2
√

t
.

A more careful analysis lets us use the last iterate (Shamir and Zhang ’13, Thm 2)

http://proceedings.mlr.press/v28/shamir13.html
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Stochastic gradients: convergence v2
xk+1 = xk − ηk(∇f(xk) + ϵk+1)

Assume E[ϵk+1|Fk] = 0,E[∥ϵk+1∥2|Fk] = σ2, f is µ-SC and L-smooth, ηk ≤ 1/L

E[f(xk+1)− f(x∗)|Fk] ≤ f(xk)− f(x∗)− ηk∥∇f(xk)∥2(1 − L
2ηk) +

L
2η

2
kσ

2

E[δk+1|Fk] ≤ δk(1 − ηk
µ2

L ) +
L
2η

2
kσ

2

Simplified Robbins-Siegmind Lemma: Suppose Vk, k ≥ 1 is a sequence of random
variables and αk, k ≥ 1, βk, k ≥ 1 are positive-valued deterministic sequences,
E[Vk+1|Fk] ≤ Vk(1 − αk) + βk
If
∑

αk = ∞,
∑

βk < ∞, βk/αk → 0, then Vk → 0 a.s., E[Vk] → 0∑
αk = ∞ ⇒

∑
ηk = ∞∑

βk < ∞ ⇒
∑

η2
k < ∞
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Why stochastic gradients?

Why SGD in ML? In statistical problems, we shouldn’t expect test error better
than 1/

√
n or 1/n anyway, so we shouldn’t optimize to crazy accuracy. With

SGD, the periteration cost is low. Meanwhile, heavyweight solvers like Newton
methods require a massive per-iteration complexity, with the promise of crazy
accuracy; but, again we don’t need that crazy accuracy here.
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More about SGD

SGD + Armijo
Aaron Defazio Lecture in NYU (About using SGD in deep learning)

SGD vs GD: (19:18) At early stages, the correlation is remarkable. The stochastic
gradient can be correlated up to a coefficient of 0.999 to the true gradient.
Minibatch: (23:09) Yann recommended we used mini batches equal to the size of
the number of classes in our data set. (36:20) Change your learning rate when you
change your batch size, rather than changing the momentum.
Momentum: (40:35) This acceleration is hard to realize when you have stochastic
gradients. Probably why momentum helps is noise smoothing: it averages gradients.
Initialization: (63:45) For large neural network, as long as you use the same variance
scaling initialization, you’ll end up practically same quality solutions.
BatchNorm: (71:07) it is no longer SGD if you use BatchNorm. (72:45) Group
Norm works better sometimes. (74:19) In terms of a practical consideration, this
normalization makes the weight initialization that you use a lot less important.

https://arxiv.org/abs/1905.09997
https://www.youtube.com/watch?v=--NZb480zlg
https://medium.com/techspace-usict/normalization-techniques-in-deep-neural-networks-9121bf100d8
https://medium.com/techspace-usict/normalization-techniques-in-deep-neural-networks-9121bf100d8
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