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Deconvolution for estimating sampling distribution

= Most of prior work focused on differential private (DP) point estimates of a parameter, but
not general-purpose methods to quantify the uncertainty of a DP procedure.

We obtain a tight privacy analysis of a DP bootstrap and develop inference strategies.

= We derive the privacy guarantee of the DP bootstrap for one bootstrap estimate.

= We quantify the asymptotic cumulative privacy cost of many DP bootstrap estimates.

= \We use deconvolution on the DP bootstrap estimates to obtain a private estimate of the
sampling distribution. For real-world experiments, our private Cls achieve the nominal
coverage level and offer the first approach to private inference for quantile regression.

Background and f-DP (Dong et al., 2022)

= M inputs a dataset D and outputs a random variable. d(-, -): Hamming distance.

= With one observation X ~ M(Dxe), consider a hypothesis test e
Hy: X ~M(D),Hy: X ~ M(D'") where d(D, D") < 1. Then M functions - 15 -DP - Not -DP (2)
provides a stronger privacy guarantee if this test is harder. Loy

=ForHy: X ~ P, Hi: X ~ @, and any rejection rule ¢(X), “
Tpo(a) is the tradeoff function which maps the type | error « to
the smallest corresponding type Il error.

* Mis f-DPif Tvypympy = f forany d(D,D") < 1.

“ It f = TN, f-DPis called p-Gaussian DP (GDP).

= Gaussian Mechanism: M(D) = g(D) + & satisfies u-GDP if € ~
N (0, sensitivity(g)*/p?), sensitivity(g) = supgp py<1 |9(D) — g(D')].
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Difficulty in privacy analysis with bootstrap estimates

= M o boot(D) indicates that the input of M is a bootstrap sample of dataset D.

= Given M being (g, §)-DP, Balle et al. (2018) proved a lower bound for M o boot in
(e,d)-DP which can be converted to an f-DP bound using results in (Dong et al., 2022).

= However, the converted result is intractable and cannot be easily evaluated.

Theorem 1: Tractable result of one DP Bootstrap estimate in f-DP

* For a bootstrap sample, with probability p; = (7) (1/n)"(1 = 1/n)""", w0y ., .,
the different individual in D and D’ is chosen i times. 75 o fh & f

= Assume M satisfies f;-Group DP with group size i
= i.e., TM(D),M(D’) > fz for all d(D, D,) < 1.
= e.g., if M is u-GDP, then for group size 1, it is also iu-GDP.
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= For any slope A\ € (—o0, 0], find «; such that f/(a;) = A.

To recover the sampling distribution from DP Bootstrap estimates, we use additive noise

mechanism y = y + £ to guarantee DP and use deconvolution to recover the distribution of y
(bootstrap estimates) from DP bootstrap estimates ¢ and the distribution of £ (added noises).
“let Z =X +Y;its PDF f4(t) .= [°_ fx(7)fy(t —T)dr.  Figure 1. DP Bootstrap and

. ) ) deconvolution.
= Deconvolution is solving fx given fy and f.

Empirical density function

= |n practice, we use the deconvolveR (Narasimhan and
Efron, 2020). It works well when 1 < Var(X)/Var(Y);
Otherwise, the estimate fX is usually flatter than fx.
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= Bootstrap (Efron, 1979) is sampling with replacement.
— Sensitivity after Bootstrap can be n times larger than without Bootstrap.

= We need many bootstrap estimates for an accurate estimation of sampling distribution.

— More observations make the hypothesis test easier therefore weaker privacy guarantee.
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Let f = (f1,.--, fe)- p= (D1, .., pp), @ = Zlepiai, Lo0 prerEe
Define mix(p, f) : = S0 pifiv;) by parameterization in A. . 075] b
"= M 0boot is fooes-DP Where fuoor == mix ((po, p). (fo. f)), 2o
po=(1—=1/n)"p=1(p1,. .., pa), fola) =1 —a 2 o]
= A stronger result is fooor := Symm(py fo + (1 — po)mix(p, f)) and L) N
Symm(-) maps asymmetric tradeoff functions to symmetric ones. Type | error
= Iffori=1,...,k, f/is monotonically increasing for every a in [0, 1], we have

mix(p, f) = (S, (pifi o (F)7) o (i wilf) ™) " since (5, pi( f)™") maps the slope A
to the type I error, and (Zle(pif@- o (f1)~1)) maps the slope X to the type Il error.

= Matching the slope follows the Neyman-Pearson lemma as the slope is the negative
likelihood ratio between M (D') and M (D) on the boundary of the optimal rejection region.

= To achieve this lower bound, the adversary needs to separately design rejection rule ¢;
with type | error «; for the case that the bootstrap samples having ¢ copies of the different
individual, and the adversary also needs to optimize «;.

Theorem 2: Asymptotic composition result of many DP Bootstrap estimates in GDP
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= Assume Mp; satisfies up-GDP.

\ - - 1-GDP
* M\ = Mp,;oboot, M = {M},..., My} < 0.751 !?_) - 1125-GoP
= ME _is asymptotically ;-GDP if E 050 ."\"\
limp oo /(2 — 2/e)B = . (v/(2 = 2/e) < 1.125) é N
0.251 N
= For Gaussian mechanism, if adding noises & ~ N(0, o?) T
on the non-private output guarantees p-GDP, then for 0.001 e
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(11/v/B)-GDP, we only need to add & ~ N(0, Bo?).

= We construct private Cls using quantiles of the deconvolved sampling distribution.
We compare our DP Bootstrap with NoisyVar (Du et al., 2020) and DP-CI-ERM (Wang
et al.,, 2019) on the 2016 Canada Census dataset. We build Cls for the population mean
income and for the slope parameter in the logistic regression and quantile regression
between the market income and shelter cost. (The confidence level is 90%, and the
privacy guarantee is 1-GDP)

Figure 2. Results of Cls for the regression coefficient.
Note that DP-CI-ERM cannot be used on quantile regression.
Table 1. 90% Cls for the mean

income. (n = 200,000, B = 100) Cl width Cl coverage P(ClI covers 0)
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Discussions and References
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= New inference techniques are needed when using non-additive noise mechanisms.

= New composition results may help quantify non-asymptotic cumulative privacy costs.
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