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Motivation and Contributions

Most of prior work focused on differenধal private (DP) point esধmates of a parameter, but

not general-purpose methods to quanধfy the uncertainty of a DP procedure.

We obtain a ধght privacy analysis of a DP bootstrap and develop inference strategies.

We derive the privacy guarantee of the DP bootstrap for one bootstrap esধmate.

We quanধfy the asymptoধc cumulaধve privacy cost of many DP bootstrap esধmates.

We use deconvoluধon on the DP bootstrap esধmates to obtain a private esধmate of the

sampling distribuধon. For real-world experiments, our private CIs achieve the nominal

coverage level and offer the first approach to private inference for quanধle regression.

Background and f-DP (Dong et al., 2022)

M inputs a dataset D and outputs a random variable. d(·, ·): Hamming distance.
With one observaধon X ∼ M(Dtrue), consider a hypothesis test
H0 : X ∼ M(D), H1 : X ∼ M(D′) where d(D, D′) ≤ 1. Then M
provides a stronger privacy guarantee if this test is harder.

For H0 : X ∼ P , H1 : X ∼ Q, and any rejecধon rule φ(X),
TP,Q(α) is the tradeoff funcধon which maps the type I error α to

the smallest corresponding type II error.

M is f-DP if TM(D),M(D′) ≥ f for any d(D, D′) ≤ 1.
If f = TN (0,1),N (µ,1), f-DP is called µ-Gaussian DP (GDP).

Gaussian Mechanism: M(D) = g(D) + ξ saধsfies µ-GDP if ξ ∼
N (0, sensitivity(g)2/µ2), sensitivity(g) = supd(D,D′)≤1 |g(D) − g(D′)|.
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Difficulty in privacy analysis with bootstrap estimates
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Bootstrap (Efron, 1979) is sampling with replacement.

→ Sensiধvity ađer Bootstrap can be n ধmes larger than without Bootstrap.

We need many bootstrap esধmates for an accurate esধmaধon of sampling distribuধon.

→ More observaধons make the hypothesis test easier therefore weaker privacy guarantee.

DP guarantee with single and multiple bootstrap estimates

M ◦ boot(D) indicates that the input of M is a bootstrap sample of dataset D.

Given M being (ε, δ)-DP, Balle et al. (2018) proved a lower bound for M ◦ boot in

(ε, δ)-DP which can be converted to an f-DP bound using results in (Dong et al., 2022).

However, the converted result is intractable and cannot be easily evaluated.

Theorem 1: Tractable result of one DP Bootstrap esধmate in f-DP

For a bootstrap sample, with probability pi =
(

n
i

)
(1/n)i(1 − 1/n)n−i,

the different individual in D and D′ is chosen i ধmes.

Assume M saধsfies fi-Group DP with group size i

i.e., TM(D),M(D′) ≥ fi for all d(D, D′) ≤ i.

e.g., if M is µ-GDP, then for group size i, it is also iµ-GDP.

For any slope λ ∈ (−∞, 0], find αi such that f ′
i(αi) = λ.

Let f = (f1, . . . , fk). p = (p1, . . . , pk), α =
∑k

i=1 piαi.

Define mix(p, f ) : α 7→
∑k

i=1 pifi(αi) by parameterizaধon in λ.

M ◦ boot is fboot-DP where fboot := mix
(
(p0, p), (f0, f )

)
,

p0 = (1 − 1/n)n, p = 1
1−p0

(p1, . . . , pn), f0(α) = 1 − α.

A stronger result is fboot := Symm(p0f0 + (1 − p0)mix(p, f )) and
Symm(·) maps asymmetric tradeoff funcধons to symmetric ones.
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If for i = 1, . . . , k, f ′
i is monotonically increasing for every α in [0, 1], we have

mix(p, f ) = (
∑k

i=1(pifi ◦ (f ′
i)−1)) ◦ (

∑k
i=1 pi(f ′

i)−1)−1 since (
∑k

i=1 pi(f ′
i)−1) maps the slope λ

to the type I error, and (
∑k

i=1(pifi ◦ (f ′
i)−1)) maps the slope λ to the type II error.

Matching the slope follows the Neyman-Pearson lemma as the slope is the negaধve

likelihood raধo between M(D′) and M(D) on the boundary of the opধmal rejecধon region.
To achieve this lower bound, the adversary needs to separately design rejecধon rule φi

with type I error αi for the case that the bootstrap samples having i copies of the different

individual, and the adversary also needs to opধmize αi.

Theorem 2: Asymptoধc composiধon result of many DP Bootstrap esধmates in GDP

Assume MB,i saধsfies µB-GDP.

M′
i = MB,i ◦ boot, MB

boot = {M′
1, . . . , M′

B}.
MB

boot is asymptoধcally µ-GDP if

limB→∞ µB

√
(2 − 2/e)B → µ. (

√
(2 − 2/e) < 1.125)

For Gaussian mechanism, if adding noises ξ ∼ N (0, σ2)
on the non-private output guarantees µ-GDP, then for

(µ/
√

B)-GDP, we only need to add ξ ∼ N (0, Bσ2).
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Deconvolution for estimating sampling distribution

To recover the sampling distribuধon from DP Bootstrap esধmates, we use addiধve noise

mechanism ỹ = y + ξ to guarantee DP and use deconvoluধon to recover the distribuধon of y

(bootstrap esধmates) from DP bootstrap esধmates ỹ and the distribuধon of ξ (added noises).

Let Z = X + Y ; its PDF fZ(t) :=
∫ ∞

−∞ fX(τ )fY (t − τ )dτ .

Deconvoluধon is solving fX given fY and fZ .

In pracধce, we use the deconvolveR (Narasimhan and

Efron, 2020). It works well when 1 ≤ Var(X)/Var(Y );
Otherwise, the esধmate f̂X is usually flaħer than fX .

Figure 1. DP Bootstrap and

deconvoluধon.

de
ns

ity

Empirical density function

deconvolved private bootstrap

non−private bootstrap

private bootstrap

Private confidence intervals (CI)

We construct private CIs using quanধles of the deconvolved sampling distribuধon.

We compare our DP Bootstrap with NoisyVar (Du et al., 2020) and DP-CI-ERM (Wang

et al., 2019) on the 2016 Canada Census dataset. We build CIs for the populaধon mean

income and for the slope parameter in the logisধc regression and quanধle regression

between the market income and shelter cost. (The confidence level is 90%, and the

privacy guarantee is 1-GDP.)

Table 1. 90% CIs for the mean

income. (n = 200, 000, B = 100)

Method CI Coverage CI Width

Bootstrap 0.910 (0.006) 279.4 (0.54)

DP Bootstrap 0.905 (0.007) 291.0 (0.54)

NoisyVar 0.857 (0.008) 253.6 (0.16)

Figure 2. Results of CIs for the regression coefficient.

Note that DP-CI-ERM cannot be used on quanধle regression.
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