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Introduction

• Few-shot learning relates to solving a task with only
few training samples. Often, there is no enough infor-
mation in the data to solve the task by itself. Meta-
learning tackles this problem by gathering similar tasks
instead of more samples from the same task.

• There is a lack of theoretical understanding for how
it is possible to learn and use the common knowledge
among these similar tasks to reduce the complexity of
learning a new task.

•Contribution: We propose one setting, meta sparse re-
gression which contains T tasks, and provide a theo-
retical guarantee on few-shot learning under this set-
ting. Let p be the dimension of the parameter vector
for these tasks, k be the size of the support, and l be
the sample size of each task. We propose an algorithm
and show that T ∈ O((k logp)/l) tasks are sufficient in
order to recover the common support of all tasks. We
also prove that our rates are minimax optimal.

Assumptions

The dataset containing samples from multiple tasks is
generated as follows:

yti,j = XT
ti,j

(w∗+∆∗ti) + εti,j, i = 1, · · · ,T + 1; j = 1, · · · , l (1)

where, ti indicates the i-th task (solving tT+1 is our final
goal), w∗ ∈ Rp is a constant across all tasks, and ∆∗ti ∈ R

p is
the individual parameter for each task.
Our key assumptions are as follows. (SGp(·) is a sub-

Gaussian distribution of p-dimensional random vectors.)

(A1)∆∗ti ∼ SGp(σ
2
∆
). εti,j ∼ SG1(σ 2

ε ). Xti,j ∼ SGp(σ
2
x ). They are

mutually independent.

(A2) Si = Supp(w∗+∆∗ti), and S = Supp(w∗). Si ⊆ S, |S | = k.

(A3) The mixture distribution of covariates of all tasks has
the second moment matrix Σ satisfying the mutual in-
coherence condition, i.e., |||ΣSc,S(ΣS,S)−1|||∞ ≤ 1 − γ,γ ∈
(0,1]. Also, |||Σ−1/2

S,S |||2∞ ≤ c1 and λmin(ΣS,S) ≥ c2.

(A4)Xti,S and ∆∗ti,S are rotation invariant.

For the assumption A1, the distributions for different
i, j can be different as long as they are all sub-Gaussian.
For the assumption A2, it is possible that Si , S as the

sub-Gaussian distribution of ∆∗ti on the m-th entry can be
a mixture of some sub-Gaussian distributions and a Dirac
distribution δ−w∗m that can cancel out them-th entry in w∗.
Assumption A4 is only used for getting a tighter bound

to match the minimax rate. Gaussian distribution natu-
rally satisfies A4.

Our method and main results

First, we determine the common support S over the prior tasks {ti|i = 1,2, · · · ,T } by the support of ŵ formally introduced
below, i.e., Ŝ = Supp(ŵ), where

`(w) =
1

2T l

T∑
i=1

l∑
j=1

‖yti,j −X
T
ti,j
w‖22, ŵ = argmin

w
{`(w) +λ‖w‖1} (2)

Second, we use the support Ŝ as a constraint for recovering the parameters of the novel task tT+1. That is

`T+1(w) =
1
2l

l∑
j=1

‖ytT+1,j −X
T
tT+1,j

w‖22, ŵT+1 = argmin
w,Supp(w)⊆Ŝ

{`T+1(w) +λT+1‖w‖1} (3)

Theorem 1 guarantees recovering the common support S.
Theorem 1Let ŵ be the solution of the optimization problem (2). Under assumptions A1, A2, A3, if

λ ∈Ω

max
(
σεσx, max(σx,σ

2
x )σ∆
√
k
)√log(p − k)

T l


and T ∈Ω (k log(p − k)/l), with probability greater than 1− c1exp(−c2 log(p − k)), we have that
1. the support of ŵ is contained within S (i.e., S(ŵ) ⊆ S);

2. ‖ŵ−w∗‖∞ ≤
{
c3

√
kλ without assumption A4

c3λ with assumption A4
where c1, c2, c3 are constants. If ‖ŵ−w∗‖∞ ∈O(1), we have S = S(ŵ) since S ⊆ S(ŵ).

Theorem 2 guarantees recovering the novel task based on Ŝ.

Theorem 2Let ŵT+1 be the solution of the optimization problem (3). Under assumptions A1, A2, A3, with the support Ŝ
recovered from Theorem 1, if k′ := kT+1, w∗T+1 := w∗ +∆∗tT+1

, λ′ := λT+1 ∈ Θ
(
σεσx

√
log(k − k′)/l

)
and l ∈Ω (k′ log(k − k′)), with

probability greater than 1− c′1exp(−c′2 log(k − k′)), we have that
1. the support of ŵT+1 is contained within ST+1 (i.e., S(ŵT+1) ⊆ ST+1 ⊆ S);

2. ‖ŵT+1 −w∗T+1‖∞ ≤
{
c′3
√
k′λ′ without A4

c′3λ
′ with A4

where c′1, c
′
2, c
′
3 are constants. If ‖ŵT+1 −w∗T+1‖∞ ∈O(1), we have ST+1 = S(ŵT+1) since ST+1 ⊆ S(ŵT+1).

Theorem 3 provides the lower bound of sample complexity for solving both the meta task and the novel task.
Theorem 3Let Θ := {θ = (w,∆tT+1

)|w ∈ {0,1}p, ‖w‖0 = k, ∆ti ∈ {1,−1}p, Supp(∆ti) ⊆ Supp(w), ‖w+∆ti‖0 = ki}. Furthermore,
assume that θ∗ = (w∗,∆∗tT+1

) is chosen uniformly at random from Θ. We have:

P[θ̂ , θ∗] ≥ 1−
log2 + c′′1 · T l + c′′2 · lT+1

log |Θ|

where c′′1 , c
′′
2 are constants. Here |Θ| = Ω

((p
k

)( k
kT+1

))
= Ω(pkkkT+1). Therefore, if T ∈ o(k logp/l) and lT+1∈ o(kT+1 logk), then any

algorithm will fail to recover the true parameter very likely.

Table 1: Comparison on Rates of l for Our Meta Sparse Regression Method versus Different Multi-task Learning Methods.
Model Rate of l for support recovery

`1 Ours O(1) (only to recover the common support)

`1 + `1,∞ Jalali et al. (2010) O(max(k log(pT ), kT (T + logp)))

`1,∞ Negahban and Wainwright (2011) O(max(k,T )(T + logp))

`1,2 Obozinski et al. (2011) O(max(k log(p − k),T logk))

Simulations

0 2 4 6 8 10

C = T l/(k ∗ log(p− k))

0.0

0.2

0.4

0.6

0.8

1.0

P
(Ŝ
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Figure 1: Simulations for Theorem 1 on the Probability of
Exact Support Recovery with λ =

√
k log(p − k)/(T l). Left:

Probability of exact support recovery for different num-
ber of tasks under various settings of l. We can see that
P (Ŝ = S) depends on C but not on l, i.e., few-shot learn-
ing setting. Right: Our method outperforms multi-task
methods especially when T is large (Ŝ :=

⋃T
i=1 Ŝi.)
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Figure 2: Comparison between our method and a meta
learning method, CP-Regression (Maurer, 2005), under
various settings of l. The y-axis is the expected MSE of
prediction on the novel task. Our method is better.

Real-world experiments
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Figure 3: Results on the Single-Cell Gene Expression
Dataset. Left: The mean square error (MSE) of predic-
tion on the new task. Right: The size of the estimated
common support Ŝ. When l is small, our method has
lower MSE and comparable |Ŝ | to others, which suggests
that our Ŝ is more accurate.
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