Stats 545: Midterm exam

This is a 75-minute exam for 32 points. Write your name and PUID on each sheet, and also include the number of answer sheets. Attempt all questions.

[6 pts]R code 1

Let A be an $N \times N$ R matrix, with elements a_{ij} , and b an N-dimensional vector.

- 1. What is the result of A*b? What is the result of A %*% b? [2 pts]
- 2. Write 1-2 lines of R to find the number of zeros in each column of A. Use vectorization for full points. [2 pts]
- 3. Consider the R statement b[length(b)+1] <- 1. What is its cost in big-O notation? Why? [2 pts]

$\mathbf{2}$ Matrix operations

Let A, B, C be $N \times N$ invertible matrices.

- 1. What is the definition of the matrix norm $||A||_2$? If A = BC, show that $||A||_2 \leq ||B||_2 ||C||_2$ [3pts]
- 2. What is the QR decomposition of a matrix A. Explain briefly how that can be used to solve Ax = b. [3pts]

3 [8 pts]Dynamic programming

1.	Write the cost of Kalman filtering in big-O notation, explaining what the terms are.	[2pts]
2.	Explain what the cost of sorting N elements is, using the heap sort. Justify this in 1-2 lines.	[2pts]
3.	Explain briefly why the k-means algorithm always converges.	[2pts]
4.	Explain briefly the advantage of EM over k-means for learning means of a mixture of Gaussians.	[2pts]

Eigenvalues 4

- 1. Let A be a symmetric $N \times N$ matrix; recall an eigenvalue λ of A satisfies $Au = \lambda u$. Show that if λ is an eigenvalue of A, then λ^{-1} is an eigenvalue of A^{-1} . [2 pts]
- 2. Describe the steps of how would you use the power-method to find the *smallest* eigenvalue of A? [2 pts]

$\mathbf{5}$ The EM algorithm

We observe data from a mixture of two 1-d Gaussians, both with mean 0, but with unknown variances σ_1^2 and σ_2^2 . The first component has probability π , and the second $1 - \pi$. We observe N datapoints $X = (x_1, \ldots, x_N)$, let the latent-clusters be $C = (c_1, \ldots, c_N).$

- 1. Write down the log joint-probability $\log p(X, C|\mu, \pi, \sigma_1^2, \sigma_2^2)$. [2pts]
- 2. Write down the EM lower-bound $\mathcal{F}(q, \sigma_1^2, \sigma_2^2)$.
- 3. For variances σ_1^2, σ_2^2 , write the $q_i(c_i)$ that maximizes \mathcal{F} for observation *i*. Given the *q*'s how would you update σ_1^2 ? You don't have to derive these, but explain the intuition. [4pts]

[8 pts]

2pts

[6 pts]

[4 pts]