Stats 545: Midterm exam

This is a 2-hour exam for 60 points. Write your name and PUID on each sheet, and also include the number of answer sheets. Attempt all questions.

1 Matrix operations

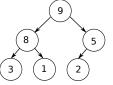
Assume multiplying two $N \times N$ matrices requires N^3 operations while an $N \times N$ matrix times an $N \times 1$ vector requires N^2 operations. Let A be an $N \times N$ matrix, and b an $N \times 1$ vector. Define $A^4 = A \cdot A \cdot A \cdot A$.

- 1. How many operations are needed to calculate $A^4 \cdot b$?
- 2. How many operations are needed to calculate A^4 ?

Let L be an $N \times N$ lower triangular matrix (i.e. $L_{ij} = 0$ for i < j)

- 3. Write down an expression for its determinant |L|.
- 4. What is the structure of L^{-1} ? (e.g. lower/upper triangular, diagonal, unstructured etc.)

2 Binary heap



Consider a binary heap with N nodes, the root containing the maximum (see the left subfigure for an example). In big-O notation (you can ignore multiplicative constants), give

- 1. the cost of **finding** the **largest** element in a binary heap. [2]
- 2. the cost of **removing** the **largest** element from a binary heap.
 - 3. the cost of finding the fifth largest element in a binary heap (N > 5). [2]
 - 4. the cost of **finding** the **smallest** element in a binary heap.

We will implement the heap as a simple list, organizing its elements sequentially as in the right subfigure.

- 5. What is the index of the parent node of element i of the list?
- 6. What are the indices of the left and right child nodes of element i of the list?
- 7. Write a few lines of pseudocode showing how you would insert a new element new_elem into the heap as implemented above. You are given the list my_heap and its length heap_len. Thus, my_heap[i] indexes the *i*th element of the heap.
 [3]

3 Hidden Markov models

Consider the same setup as the homework: an N-state Markov chain whose state at time t is S_t . The initial distribution over states is π^1 , and the transition matrix is A with $P(S_{t+1} = j | S_t = i) = A_{ij}$. At time t we observe Y_t from the distribution $P_Y(Y_t | S_t)$. We have T observations (Y_1, \ldots, Y_T) .

In the homework we were interested in calculating marginals $P(S_t|Y_1,\ldots,Y_T)$. Now we wish to find the most likely sequence of states $(S_1^*,\ldots,S_T^*) = \operatorname{argmax} P(S_1,\ldots,S_T|Y_1,\ldots,Y_T)$.

1. What is the cost of brute force search in big-O notation as a function of N and T?

[14 pts]

[14 pts]

[2]

[1]

[2]

[8 pts]

[2]

[2]

[2]

[2]

Instead, we use dynamic programming. We modify the Baum-Welch forward pass, defining α -messages as:

$$\alpha_t(i) = \max_{(S_1, \dots, S_{t-1})} P(S_1, \dots, S_{t-1}, S_t = i, Y_1, \dots, Y_t)$$

Thus, $\alpha_t(i)$ looks at the joint probabilities (with Y_1, \ldots, Y_t) of all sequences ending with $S_t = i$, and returns the largest probability.

- 2. Write down $\alpha_1(i)$ as a function of π^1 and $P_Y(Y_1|S_1)$. [2]
- 3. Write down $\alpha_{t+1}(i)$ as a function of α_t , A and P_Y .
- 4. At the end of the forward pass, we have $\alpha_T(i), i \in \{1, \dots, N\}$. What will you set S_T to? [2]
- 5. The backward pass successively sets S_t given S_{t+1} . Write down how you will set S_t .

4 The EM algorithm

We observe data from a mixture of two 1-d Gaussians with unknown means μ_1 and μ_2 , and common variance σ^2 . The first component has probability π , and the second $1 - \pi$. We observe N datapoints $X = (x_1, \ldots, x_N)$, let the latent-clusters be $C = (c_1, \ldots, c_N)$.

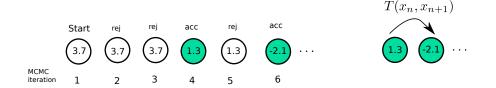
- 1. Write down the log joint-probability $\log p(X, C|\mu, \pi, \sigma^2)$. [2]
- 2. Write down the EM lower-bound $\mathcal{F}(q, \boldsymbol{\mu})$.
- 3. For means μ_1, μ_2 , write the $q_i(c_i)$ that maximizes \mathcal{F} for observation *i*. Explain how you got this. [3]
- 4. Given the q_i 's how would you update μ_1 ? You don't have to derive this, but explain the intuition. [3]
- 5. What happens to the q_i of part 3 as $\sigma^2 \to 0$. Explain qualitatively. Also explain qualitatively what happens to the overall EM algorithm. [3]

5 Monte Carlo sampling

Your friend wants samples from a distribution $\pi(x)$. He uses a Metropolis-Hastings sampler with proposal distribution $q(x^*|x_n) = q(x^*)$. Observe that the new proposal is *independent* of the current state x_n .

- 1. Write the acceptance probability $\alpha(x_n, x^*)$ of a move from x_n to x^* in terms of $\pi(x)$ and q(x). [2]
- 2. For this special case where the proposals are independent of the current state, are the resulting MCMC samples $(x_1, x_2, ...)$ also independent variables, or do they still form a Markov chain? Explain why. [2]
- 3. Assume that π and q small, so that directly calculating the acceptance probability will lead to numerical issues like NAs. Much better is to use $\log \pi$ and $\log q$. Write one or two lines of pseudocode for how you will accept or reject a move from x_n to x^* . You can assume you have access to a random number generator randu, which samples from Unif(0, 1). [3]

4.



Your friend is confused about Metropolis-Hastings. Instead of keeping *all* samples in the chain, he only keeps the accepted proposals (filled circles in the figure). What is the transition probability $T(x_n, x_{n+1}) = P(x_{n+1}|x_n)$ from one accepted sample to the next? [3]

[14 pts]

[5]

[4]

[3]

$$[10 \text{ pts}]$$