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NORMAL

The Multivariate normal (MVN) density on R¢:
P E) = e exp (3= T (¢
122 (27T)d|2‘ > M 14

Given N i.i.d. observations X = {xy, ..., xy}, the likelihood is
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NORMAL

The Multivariate normal (MVN) density on R¢:
P E) = e exp (3= T (¢
122 (27T)d|2‘ > M 14

Given N i.i.d. observations X = {xy, ..., xy}, the likelihood is

X‘,U,, Hp XI’M? Z)

Maximum likelihood estimation (MLE): learn parameters by
maximizing L(X|u, X) w.rt 4 and X.

How? Calculate derivatives and set to 0.
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MLE FOR THE MVN

More convenient is the log-likelihood ¢(X|u, X) = log L(X|u, X):

N
((X|u, T) =Y logp(xilp, E)

i=1
For the Gaussian,

N
Z(X:‘ — ) =X — ) — g log |~| — const

0=1

1
E(X’/% Z) = _E
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MLE FOR THE MVN

More convenient is the log-likelihood ¢(X|u, X) = log L(X|u, X):

N
(X[, ) = log p(xilp, X)

i=1
For the Gaussian,

N
Z(X:‘ — ) =X — ) — g log |~| — const

0=1

1

N N
1 1 .
L= _21 Xip Tue =y E 1 (Xi — pme) (i — pme)
1= l=

MLE: moment matching (set mean/covariance to that of data)

Holds for exponential family distributions (later)
24



DISCRETE DISTRIBUTION

Consider a K-component discrete distribution = = (m, ..., mk)

- forX ~m, p(X=c¢) = mc.
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Consider a K-component discrete distribution @ = (m, ...
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- Equivalently,

K K
p(X) = H wf(xzc) = exp(z 0(X = c)logm)
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DISCRETE DISTRIBUTION

Consider a K-component discrete distribution @ = (m, ...

- forX ~m, p(X=c¢) = mc.
- Equivalently,

K K
p(X) = H nf(xzc) = exp(z 0(X = c)logm)
c=1

c=1

Given data, what is MLE of n?

N
1
Te = Nz;é(x,- = ()
1=

77TK)
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BACK TO CLUSTERING

Last week we saw a few clustering algorithms.

We also saw some limitations:

- Limited control on the cluster shapes (e.g. spherical clusters
in k-means).

- Cannot capture variability across clusters.

- Cannot capture uncertainty in cluster assignments.

- Cannot capture information about relative cluster sizes.

414



MODEL-BASED CLUSTERING

We could adjust loss-function/optimization algorithm.
Different approach: directly model data-generation process
- Can capture much richer structure more intuitively.

- Can make predictions about future data.

- Can deal with missing data naturally.

5414



FINITE MIXTURE MODELS

Like k-means, fix the number of clusters to K.

- component ¢ has parameter 6.

- observations from cluster ¢ distributed as p(x|6.)
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FINITE MIXTURE MODELS

Like k-means, fix the number of clusters to K.

- component ¢ has parameter 6.

- observations from cluster c distributed as p(x|6.)

Draw cluster from m, a K-component probability vector

Today we will consider the mixture of Gaussians (MoG)

- each component is a Gaussian

© 0 = (e, £c) Is its mean and covariance
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MIXTURE OF GAUSSIANS (MOG)

To generate the ith observation:

Ci~T Sample it's cluster assignment
X ~ N (X tte,» Xe;) Sample it's value

i



MIXTURE OF GAUSSIANS (MOG)

To generate the ith observation:

Ci~T Sample it's cluster assignment
X ~ N (X tte,» Xe;) Sample it's value

Joint probability:

P(X1, ...y XNy C1y -+, O]y, E HWc, (Xilpie;, Zc,)

= H H [WJN(X,-Luj, ):j)] =)
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MODEL-BASED CLUSTERING

sssss

Given observations X = {xi, ..., xy}, we face three problems:

- What are the ¢;? (inference)
- What is 7 and 0c = (uc, 2c)?  (learning)

- What is K? (model selection, not covered here) .
8/14



LEARNING

Imagine we had the cluster assignments C. We saw:

1(c;=j
P(X'lu"'7XN7C'|7"'7CN‘7T)IJ’7 HH 7T} XI|:U’j7 ] (/ j)
i=1j=1

K K
(H(WJ)NJ> (H 11 N(X:M;,Z;)>
=1 =1 (i st. =}

Conveniently separates out into « and component parameters.

K K
log P(X, Clm, u, X) = (ZNHO@U) (Z > log/\/(xlm,z}))
=

Jj=1{i s.t. ¢i=j}
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LEARNING

K K
log P(X, Clm, 1, X) = (Zleogﬂ,) (Z > logN(Xlluj?zj))
=

Jj=1{i s.t. ¢i=j}
MLE requires three sets of ‘sufficient statistics”

- The number of observations assigned to each cluster (N;).

- The empirical mean and mean-square of obs. in each cluster

(/3/ Z Xi, Nl Z X,‘XI-T)

Jiist o=y U {ist o=}
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k-means assigns obs. to clusters given parameters. Good idea?
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INFERENCE

k-means assigns obs. to clusters given parameters. Good idea?
For an observation x;, what is the posterior probability over ck?

P(Ci|Xi77T)“v z) X P(Xi7 C,“ﬂ',p,, Z)

K o
= (H [N (il Zj)]ﬂ(c’”)

j=1
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INFERENCE

k-means assigns obs. to clusters given parameters. Good idea?
For an observation x;, what is the posterior probability over ck?

P(Ci|Xi77T’ M, z) X P(Xiv Ci‘ﬁa M, Z)
K

= | [T [V Gl Zj)}]l(C::/')

j=1

* proportional to prior probability of cluster j, m;
* proportional to compatibility obs. i with parameters 6

Written as ri.: ‘responsibility” of cluster ¢ for obs. I.

rr <- rep(0,K)
for(i in 1:K) {
rr[i] <- pi[i] * dmvnorm(x, mu[[i]],sigmal[[i]]) }
rr = rr / sum(rr); 11114



THE MIXTURE OF GAUSSIANS

How do we update parameters given these probabilities?

b= Z,N:1 licXi
Y fic
v Z:V:1 Fic XiX,‘T
25\1:1 Fic

.
Wc:Nz;ric
1=
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THE MIXTURE OF GAUSSIANS

How do we update parameters given these probabilities?

b= Z,N:1 licXi
Yl fic
s _ Yo rie i
Y fic

.
Wc:Nz;ric
1=

Compare with when we actually knew the cluster assignments.
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THE EM ALGORITHM

Initialize parameters 7, (uc, Xc) arbitrarily
Calculate the observation responsibilities ri. given parameters
Update parameters given responsibilities

Repeat till convergence
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THE EM ALGORITHM

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|m, u, T) = log Y _ P(X, Clm, u, X)
c=C
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THE EM ALGORITHM

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|7, p, X) = log » _ P(X, C|m, s, )
c=C

Can directly calculate gradients w.r.t. parameters and optimize.

Doable but messy:
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THE EM ALGORITHM

Suprising fact: EM converges to stationary point of the
log-likelihood:

log P(X|7, p, X) = log » _ P(X, C|m, s, )
c=C

Can directly calculate gradients w.r.t. parameters and optimize.

Doable but messy:

- Sums inside logarthms is inconvenient.
- Need to calculate gradients w.r.t. covariance matrices.

- Need to choose step sizes.
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