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SOME PROPERTIES OF THE GAUSSIAN

Marginalization:
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X~ N (px, Txx)
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SOME PROPERTIES OF THE GAUSSIAN

Conditioning:
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THE GAUSSIAN DISTRIBUTION, CONJUGACY AND BAYES’ RULE
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We have a Gaussian ‘prior’ on X;.
We observe a noisy measurement Yq|X; ~ N (AX7, X¢).
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X and Y jointly Gaussian: what is its mean and covariance?

Y is marginally Gaussian: what is its mean and covariance?

X|Y'is Gaussian: what is its mean and covariance?
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PRODUCT OF GAUSSIAN DENSITIES:

Product of Gaussian densities is Gaussian a Gaussian density
(upto a multiplication constant)

Intuition: sum of two quadratic functions is a quadratic
Aside: need only specify prob. distrib. to a constant

- p(x) and C- p(x) represents the same, if C is independent of x

- Probabilities must integrate to 1
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MARKOV CHAINS

Pi(X1) Py(Xiy1|X:)
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A sequence of random variables such that

P(Xi+1 |Xi7Xi—’Iv te 7X1) = 'D(XH-1 |Xl)
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MARKOV CHAINS

We'll stick to homogeneous chains:

Pi(Xy) P(Xi1|X;)

In fact, with X; € ®RP, we will consider:
X1 ~ N (1o, Xo)

Xi+1 = AX,' +¢€, €~ ./\/(O, ZE)

If our chain has T steps, a TD-dimensional Gaussian!

In the figure, T = 4. In practice: thousands to millions.
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A HIDDEN MARKOV MODEL

We don’t observe the chain directly:

Pi(Xy) P(Xi41]X5)

P(Yi|X:)
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Yi=BXi+(, (~N(0,%;), Yien?

We want to answer questions like: What is p(Xj|Y4,---, Y7)?
{Xi,Yi} is a (D + d)T-dimensional Gaussian.
We ‘just’ have to look at conditionals?
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