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Clustering

Given a large dataset, group data points into ‘clusters’.

Data points in the same cluster are similar in some sense.

E.g. cluster students scores (to decide grade)

Applications:

Compression/feature-extraction/exploration/visualization

• simpler representation of complex data

Image segmentation, community detectn, co-expressed genes
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Clustering (contd.)

We are given N data vectors (x1, . . . , xN) in ℜd.
Let ci be the cluster assignment of observation xi:

ci ∈ {1 · · · K}

Equivalently, we can use one-hot (or 1-of-K) encoding:

ric =

1, if ci = c
0, otherwise

Observe: ric ≥ 0 and
∑K

c=1 ric = 1 just like a probability vector.

However, ric is binary: we will relax this in later lectures.
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Cluster parameters

Associate cluster i with parameter θi ∈ ℜd (cluster prototype).

Write θ = {θ1, . . . , θK}, C = {c1, . . . , cN} (or R = {r, . . . , rN}).

Problem: Given data (x1, . . . , xN) find θ and C.

Define a loss-function L(θ,C), and minimize it.

Start by defining a distance (or similarity measure) d(x,θ):

d(x,θ) =
d∑
i=1

(xi − θi)
2 Squared Euclidean or L2 dist.

d(x,θ) =
d∑
i=1

|xi − θi| L1 distance
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Clustering loss function

We want all members of a cluster to be close to the prototype.∑
i s.t. ci=c

d(xi,θc) =
N∑
i=1

ricd(xi,θc) should be small for each c.

Overall loss function:

L(θ,R) =
K∑
c=1

N∑
i=1

ricd(xi,θc)

Optimize over both:

• cluster assignments (discrete)
• cluster parameters (continuous)
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K-means

Minimizing L(θ,C) is hard (O(NDK+1)).

Instead, use heuristic greedy (local-search) algorithms.
When d(·, ·) is Euclidean, the most popular is Lloyd’s algorithm.

If we had the cluster parameters θ∗, can we solve for C?

Copt = argmin L(θ∗,C)

If we had the cluster assignments C∗, can we solve for θ?

θopt = argmin L(θ,C∗)
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K-means

Start with an initialialization of the parameters, call it θ0.
Assign observations to nearest clusters, giving R0.

Repeat for i in 1 to N:

• Recalculate cluster means, θi
• Recalculate cluster assignments, Ri

Coordinate-descent.

Resulting algorithm has complexity O(INKD)
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[demo]
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Questions

Does this algorithm converge to a global minimum?

Does it converge at all?

What is the convergence criteria?
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Limitations

Local optima: Sensitive to initialization.
Solution: Run many times and pick the best clustering.

Empty clusters.
Solution: discard them, or use heuristics to assign
observations to them

Choosing K.
Solution: search over a set of K’s, penalizing larger values.

Requires circular clusters.
Solution: use some other method
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Variations to k-means

Modify distance functions.
L1 distance: k-medians

Modify the algorithm.
L1 distance: k-medoids (exemplar-based)
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Hierarchical clustering

k-means is a partitioning algorithm that assigns each
observation to a unique cluster.
Often there is no clear best clustering.
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Two approaches:

Top-down (divisive) clustering:

• Initialize all observations into a single cluster, and divide
clusters sequentially.

Bottom-up (agglomerative) clustering:

• Initialize each observation in its own cluster, and merge
clusters sequentially.

• More flexible, and more common.
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Agglomerative clustering
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Agglomerative clustering

Pick a distance function (e.g. Euclidean).

Pick a linkage criterion defining distance between two clusters:

• Single linkage: d(A,B) = minx∈A,y∈B d(x, y).
• Complete linkage: d(A,B) = maxx∈A,y∈B d(x, y).
• Centroid linkage: d(A,B) = d(CA, CB) (CA: centroid of A).
• Average linkage: d(A,B) = 1

|A||B|
∑

x∈A,y∈B d(x, y).
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Some properties of the Gaussian
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Some properties of the Gaussian

Conditioning:[
X
Y

]
∼ N

([
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]
,
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The Gaussian distribution, conjugacy andBayes’ rule

We have a Gaussian ‘prior’ on X1.
We observe a noisy measurement Y1|X1 ∼ N (AX1,ΣE).

[
X
ϵ

]
→

[
X
Y

]
X and Y jointly Gaussian: what is its mean and covariance?

Y is marginally Gaussian: what is its mean and covariance?

X|Y is Gaussian: what is its mean and covariance? 17/18



Product of Gaussian densities:

Product of Gaussian densities is Gaussian (upto normalization)
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Intuition: sum of two quadratic functions is a quadratic

Aside: need only specify prob. distrib. to a constant

• p(x) and C ·p(x) represents the same, if C is independent of x
• Probabilities must integrate to 1
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