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CLUSTERING

Given a large dataset, group data points into ‘clusters’.
Data points in the same cluster are similar in some sense.
E.g. cluster students scores (to decide grade)
Applications:
Compression/feature-extraction/exploration/visualization

- simpler representation of complex data

Image segmentation, community detectn, co-expressed genes
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CLUSTERING (CONTD.)

We are given N data vectors (xi,...,Xy) in ®¢.
Let ¢; be the cluster assignment of observation x;:

Gefl-K}

Equivalently, we can use one-hot (or 1-of-K) encoding:

1, ifc=c
lic = .
0, otherwise
Observe: ri. > 0 and 25:1 ric = 1just like a probability vector.

However, rj. is binary: we will relax this in later lectures.
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CLUSTER PARAMETERS

Associate cluster j with parameter 6; € R¢ (cluster prototype).
Write @ = {61, ...,0k}, C={c1,...,cn} (or R={r,... ry}).
Problem: Given data (xq,...,xy) find @ and C.

Define a loss-function L(@, C), and minimize it.

Start by defining a distance (or similarity measure) d(x, 8):

d
d(x,0) = Z(X/ —6;)? Squared Euclidean or L, dist.
i=1

d
d(x,0) = > |x — 6| L, distance
i=1

3/8



CLUSTERING LOSS FUNCTION

We want all members of a cluster to be close to the prototype.
> d(x;,0c Zr,c (x;,0.) should be small for each c.

i s.t. ci=c

Overall loss function:

N

K
R) =)
c=1

ricd(x;, 0¢)
=1 =1

Optimize over both:

- cluster assignments (discrete)

- cluster parameters (continuous)
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K-MEANS

Minimizing L(@, C) is hard (O(NPK+1)).

Instead, use heuristic greedy (local-search) algorithms.
When d(+,-) is Euclidean, the most popular is Lloyd's algorithm.

If we had the cluster parameters 8*, can we solve for C?
Copt = argmin L(8*,C)
If we had the cluster assignments C*, can we solve for 6?

Oopt = argmin L(6,C*)
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K-MEANS

Start with an initialialization of the parameters, call it 6.
Assign observations to nearest clusters, giving Ro.

Repeat foriin 1to N:

- Recalculate cluster means, 6,

- Recalculate cluster assignments, R;

Coordinate-descent.

Resulting algorithm has complexity O(INKD)
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[demo]
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QUESTIONS

Does this algorithm converge to a global minimum?
Does it converge at all?

What is the convergence criteria?
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LIMITATIONS

Local optima: Sensitive to initialization.
Solution: Run many times and pick the best clustering.

Empty clusters.
Solution: discard them, or use heuristics to assign

observations to them

Choosing K.
Solution: search over a set of K’s, penalizing larger values.

Requires circular clusters.
Solution: use some other method
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VARIATIONS TO K-MEANS

Modify distance functions.
L4 distance: k-medians

Modify the algorithm.
L, distance: k-medoids (exemplar-based)
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HIERARCHICAL CLUSTERING

k-means is a partitioning algorithm that assigns each
observation to a unique cluster.
Often there is no clear best clustering.
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HIERARCHICAL CLUSTERING
k-means is a partitioning algorithm that assigns each

observation to a unique cluster.
Often is is natural to view data as having a hierarchical structure
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HIERARCHICAL CLUSTERING

k-means is a partitioning algorithm that assigns each
observation to a unique cluster.
Often is is natural to view data as having a hierarchical structure
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TWO APPROACHES:

Top-down (divisive) clustering:

- Initialize all observations into a single cluster, and divide
clusters sequentially.

Bottom-up (agglomerative) clustering:

- Initialize each observation in its own cluster, and merge
clusters sequentially.

- More flexible, and more common.
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AGGLOMERATIVE CLUSTERING
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AGGLOMERATIVE CLUSTERING

Pick a distance function (e.g. Euclidean).

Pick a linkage criterion defining distance between two clusters:

- Single linkage: d(A, B) = minyeayes d(X, y).
- Complete linkage: d(A, B) = maxxeayes d(X, ¥).
- Centroid linkage: d(A, B) = d(Ca, Cg) (Ca: centroid of A).

- Average linkage: d(A, B) = rzig1 Yoxen yep (X Y)- e
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SOME PROPERTIES OF THE GAUSSIAN

Marginalization:

aaaaaaaaaaa

X~ N (px, Txx)
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SOME PROPERTIES OF THE GAUSSIAN

Conditioning:

AR
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YIX ~ N (py + TxvIy (@ —px) 5 Tyy — ZXYZ)?)JZYX)
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THE GAUSSIAN DISTRIBUTION, CONJUGACY AND BAYES’ RULE

X1 NN(,U,,E)

@ e~N(0,2g)

@ Y1:AX1+6

We have a Gaussian ‘prior’ on X;.
We observe a noisy measurement Yq|X; ~ N (AX7, X¢).

[X] [X]

%

€ Y

X and Y jointly Gaussian: what is its mean and covariance?

Y is marginally Gaussian: what is its mean and covariance?

. . . . 1718
X|Y is Gaussian: what is its mean and covariance? N



PRODUCT OF GAUSSIAN DENSITIES:

Product of Gaussian densities is Gaussian (upto normalization)

Intuition: sum of two quadratic functions is a quadratic
Aside: need only specify prob. distrib. to a constant
- p(x) and C- p(x) represents the same, if C is independent of x

- Probabilities must integrate to 1
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