
lecture 6: complexity,
data-structures and sorting
STAT 545: Intro. to Computational Statistics

.

Vinayak Rao
Purdue University

September 28, 2015



Linear algebra
.

Let x and y be N× 1 vectors

Let A and B be N× N and N×M matrices

How many additions and multiplications to calculate:

• x⊤y
• Ax
• AB
• A−1

1/15



Big-O notation
.

The big-O notation provides an asymptotic upper bound:

O(g(N)) = {f : ∃c,N0 > 0 s.t. f(N) ≤ cg(N) ∀N > N0}

2N3 ∈ O(N3)

N2 ∈ O(N3)

N3 + N2 ∈ O(N3)

N3 + exp(N) ̸∈ O(N3)

So is matrix multiplication O(N3)? Yes, but: it’s also O(N2.38)!

Conjecture: matrix multiplication is actually O(N2).

2/15



Big-O notation
.

The big-O notation provides an asymptotic upper bound:

O(g(N)) = {f : ∃c,N0 > 0 s.t. f(N) ≤ cg(N) ∀N > N0}

2N3 ∈ O(N3)

N2 ∈ O(N3)

N3 + N2 ∈ O(N3)

N3 + exp(N) ̸∈ O(N3)

So is matrix multiplication O(N3)? Yes, but: it’s also O(N2.38)!

Conjecture: matrix multiplication is actually O(N2).

2/15



Big-O notation
.

The big-O notation provides an asymptotic upper bound:

O(g(N)) = {f : ∃c,N0 > 0 s.t. f(N) ≤ cg(N) ∀N > N0}

2N3 ∈ O(N3)

N2 ∈ O(N3)

N3 + N2 ∈ O(N3)

N3 + exp(N) ̸∈ O(N3)

So is matrix multiplication O(N3)? Yes, but: it’s also O(N2.38)!

Conjecture: matrix multiplication is actually O(N2).

2/15



Big-O notation
.

The big-O notation provides an asymptotic upper bound:

O(g(N)) = {f : ∃c,N0 > 0 s.t. f(N) ≤ cg(N) ∀N > N0}

2N3 ∈ O(N3)

N2 ∈ O(N3)

N3 + N2 ∈ O(N3)

N3 + exp(N) ̸∈ O(N3)

So is matrix multiplication O(N3)? Yes, but: it’s also O(N2.38)!

Conjecture: matrix multiplication is actually O(N2).

2/15



Sorting
.

Consider a set of N numbers. We want to sort them in
decreasing order. What is the complexity?

Naïve algorithm:

• Find smallest number. Cost? O(N)
• Find next smallest number. Cost? O(N)
• · · ·

Overall cost? O(N2)

Can we do better?

3/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2

8
3

9

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2

8
3

9

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2

8
3

9

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2

8
3

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2

8
3

6

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2

8
3

6

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2

8

3
6

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2 3

6

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2 3

6

4/15



Priority queue
.

A ‘bag’ with three commands: Insert, FindMax and RemoveMax.

4 3 1
2 3

6

Sorting, clustering, discrete-event simulation, queuing systems
How do we implement this?

4/15



Priority queue
.

Naive approach 1: an unsorted array:

(3, 1, 4, 2, 6, 8, 3)

3 1 4 2 6 8 3

Start End

What is the cost of Insert? O(1)
What is the cost of FindMax? O(N)
What is the cost of RemoveMax (assume we’ve already found the
maximum)? O(1)

5/15



Priority queue
.

Naive approach 1: an unsorted array:

(3, 1, 4, 2, 6, 8, 3)

3 1 4 2 6 8 3

Start End

What is the cost of Insert? O(1)
What is the cost of FindMax? O(N)
What is the cost of RemoveMax (assume we’ve already found the
maximum)? O(1)

5/15



Priority queue
.

Naive approach 2: a sorted array:

(1, 2, 3, 3, 4, 6, 8)

31 42 6 83

Start End

Cost of FindMax? O(1)
Cost of RemoveMax? O(1)
Cost of Insert.FindPosition? O(log(N)) (binary search)
Cost of Insert.Insert? O(N)

6/15



Priority queue
.

Naive approach 2: a sorted array:

(1, 2, 3, 3, 4, 6, 8)

31 42 6 83

Start End

Cost of FindMax? O(1)
Cost of RemoveMax? O(1)
Cost of Insert.FindPosition? O(log(N)) (binary search)
Cost of Insert.Insert? O(N)

6/15



Priority queue
.

Naive approach 3: a sorted linked-list:

2
8

n

n

n

n

n

n

n

31

Start 6

4

p

p

p
p

p

p

p

3
End

What is the cost of FindMax? O(1)
What is the cost of RemoveMax? O(1)
What is the cost of Insert? O(N)
Each approach solves one problem, but makes another
operation log(N). Can we do better?

7/15



Priority queue
.

Naive approach 3: a sorted linked-list:

2
8

n

n

n

n

n

n

n

31

Start 6

4

p

p

p
p

p

p

p

3
End

What is the cost of FindMax? O(1)
What is the cost of RemoveMax? O(1)
What is the cost of Insert? O(N)

Each approach solves one problem, but makes another
operation log(N). Can we do better?

7/15



Priority queue
.

Naive approach 3: a sorted linked-list:

2
8

n

n

n

n

n

n

n

31

Start 6

4

p

p

p
p

p

p

p

3
End

What is the cost of FindMax? O(1)
What is the cost of RemoveMax? O(1)
What is the cost of Insert? O(N)
Each approach solves one problem, but makes another
operation log(N). Can we do better? 7/15



Heaps
.

We need a more complicated data-structure: a Heap.

2

2

4

1 1 3

7

8

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

2

2

4

1 1 3

7

8

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps
.

2

4

2

1 1 3

7

8

For a precise definition, see: http://pages.cs.wisc.edu/
~vernon/cs367/notes/11.PRIORITY-Q.html

8/15

http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html


Heaps: Insert
.

2

2

4

1 1 3

7

8

9/15



Heaps: Insert
.

2

2

4

1 1 3

7

8

9/15



Heaps: Insert
.

2

2

4

1 1 3

7

8

9

9/15



Heaps: Insert
.

2

4

1 1 3

7

8

2

9

9/15



Heaps: Insert
.

2

1 1 3

7

8

2

4

9

9/15



Heaps: Insert
.

2

1 1 3

7

2

4

8

9

9/15



Heaps: Insert
.

2

1 1 3

7

2

4

8

9

Cost? O(log(N))

9/15



Heaps: RemoveMax
.

2

1 1 3

7

2

4

8

9

10/15



Heaps: RemoveMax
.

2

1 1 3

7

2

4

8

10/15



Heaps: RemoveMax
.

2

1 1 3

7 2

4

8

Swap with larger child

10/15



Heaps: RemoveMax
.

2

1 1

37

24

8

10/15



Heaps: RemoveMax
.

2

1 1

37

24

8

Cost? O(log(N))

10/15



Heapsort
.

Consider a set of N numbers. Want to sort in decreasing order.

Grow a priority queue, sequentially adding elements

• Cost of each step? O(log(N))
• Overall cost? O(N log(N))

Sequentially remove the maximum element

• Cost of each step? O(log(N))
• Overall cost? O(N log(N))

Cost of overall algorithm? O(N log(N))

11/15



Quicksort
.

7 3 2 1 5 9 4

12/15



Quicksort
.

7 3 2 1 5 9 4

• Pivot: #7
• Start: #1
• End: #6

12/15



Quicksort
.

4 3 2 1 5 9 7

• Pivot: #1
• Start: #2
• End: #6

12/15



Quicksort
.

4 3 2 1 5 9 7

• Pivot: #1
• Start: #2
• End: #6

12/15



Quicksort
.

3 4 2 1 5 9 7

• Pivot: #2
• Start: #3
• End: #6

12/15



Quicksort
.

3 2 4 1 5 9 7

• Pivot: #3
• Start: #4
• End: #6

12/15



Quicksort
.

3 2 1 4 5 9 7

Recurse for each half

12/15



Quicksort
.

3 2 1 4 5 9 7

Recurse for each half

12/15



Quicksort
.

32 4 591 7

Recurse for each half

12/15



Quicksort
.

32 4 591 7

At the end, we have a sorted list

12/15



Analysis of quicksort
.

Analysis is a bit harder

What is the worst-case runtime?

What is the best-case runtime?

Average run-time is Θ(n logn)

Average with respect to what?

Randomized algorithms

13/15



Final (informal) comments
.

Class P: Problems of polynomial complexity. Let T(n) be
running-time for input size n. Then there is a k such that:

T(n) = O(nk)

Class E: Problems of exponential complexity.

T(n) = exp(O(n))

Class NP: Problems of where proposed solution can we verified
in polynomial time. E.g. graph isomorphism
Class NP-hard: at least as hard as the hardest problems in NP
(halting problem)
Class NP-complete: Hardest problems in NP (i.e. problems in
both NP and NP-hard). E.g. travelling salesman.

14/15



P = NP?
.

A million dollar question (literally)

C
o
m

p
le

x
it

y

P ≠ NP P = NP

NP-Hard

NP-Complete

P

NP

NP-Hard

P = NP =
NP-Complete

15/15


