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Preliminaries

HW1 is up on the course webpage
(due before class Tue, Sept 13)

Write up homework using knitr and R markdown

Submit HWs to course email (see lecture 1)
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Dynamic Programming

Solve a complex problem by breaking it into simpler problems

Recursion without recalculation:

• Relate solution of a problem to solutions of simpler
problems (recursion)

• Identify and solve initial (base) problems
• Reuse existing solutions to compute more complicated
solutions (memoization)
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Prob 1: Who is the tallest person in class?

Setup: We can only compare heights one pair at a time.

Naïve approach: build a binary relation matrix:



a b ... N

a − 1 . . . 1
b 0 − . . . 1

...
... . . . ...

N 0 0 . . . −


O(N2) comparisons, but lots of redundancy.

Can we do better?
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Prob 2: Order-dependent sums

Pick a set of unique integers. E.g. {1, 3, 4}.
Find the number of ways to write N as sums of these.

E.g. for N = 5, the answer is 6:

5 = 1+ 1+ 1+ 1+ 1
= 1+ 1+ 3
= 1+ 3+ 1
= 3+ 1+ 1
= 1+ 4
= 4+ 1

http://web.stanford.edu/class/cs97si/
04-dynamic-programming.pdf
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Order-dependent sums (contd.)

How do we solve for N = 1000?

Let DN be the solution (e.g. D5 = 6).

Define a recursion. Observe that

• any sum ends with a 1, 3 or 4.
• if the last term is i, the remaining sum to N− i.
• DN = DN−1 + DN−3 + DN−4

Also, D0 = D1 = D2 = 1,D3 = 2
ordered_sum <- function(N) {

D <- rep(1,N); D[c(3,4)] <- c(2, 3)
for(i in 5:N) {
D[i] <- D[i-1] + D[i-3] + D[i-4] }

return(D[N]) }
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The knapsack problem

Given:

• a bag with (integer) capacity W lbs
• n types of objects, with integer weights (w1, . . . ,wn) lbs and
positive value (v1, . . . , vn)

• Unlimited objects of each type

Goal: Fill bag to maximize value V(W)

What is V(0)?

How about V(1) and V(2)?

Can we express V(i) in terms of V(j), j < i?

V(i) = maxj:wj≤iV(i− wj) + vj
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A 2-dimensional dynamic program

Want to align nucleotides in two DNA sequences

Similarity can suggest functionality of a newly sequenced gene

Russell Doolittle and colleagues found similarities between
cancer-causing gene and normal growth factor (PDGF) gene

Simple sources of misalignment:

Substitution: A-A-C-T-G-G-A
A-A-C-T-C-G-A

Insertion: A-A-C-G-G-A
A-A-C-*-G-A

Deletion: A-A-C-T-*-G-A
A-A-C-T-C-G-A
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Sequence alignment

Given two sequences:

A-A-C-T-A-T-G-G-C-C-A
A-C-A-C-T-A-T-G-G-C-T

What is the best alignment?

For two length N sequences, are about 22N/
√
πN alignments
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Sequence alignment

Given two sequences:

A-A-C-T-A-T-G-G-C-C-A
A-C-A-C-T-A-T-G-G-C-T

Define a distance between two sequences:
• Each substitution has a cost CS
• Each insertion/deletion has a cost CG (gap penalty)
• In practice, these can depend on the nucleotides
A-A-*-C-T-A-T-G–G-C-C-A
A-C-A-C-T-A-T-G-G-*-C-T
This alignment has cost 2CS + 2CG.

For two length N sequences, are about 22N/
√
πN alignments
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Dynamic programming recursion

Consider aligning to two strings S1 and S2 of length i and j:
S1 =…-G-C-C-A and S2 = …-G-G-C-T
Three possibilities:

• The last two characters are matched:
…-A
…-T

CM(i, j) = Cost(i− 1, j− 1)+ Cost of match-
ing elements S1(i) and S2(j).

• A gap in the first string:
…-*
…-T

CI(i, j) = Cost(i, j − 1)+ Cost of inserting
gap after S2(j).

• A gap in the second string:
…-A
…-*

CD(i, j) = Cost(i − 1, j)+ Cost of inserting
gap after S1(i).

The actual (best) cost:
Cost(i, j) = min (CM(i, j), CI(i, j), CD(i, j))
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Demo

[http : //baba.sourceforge.net]
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Backtracking

Forward recursion only returns cost of the best alignment.
What is this alignment?

Compute via a backward trace

Recall: Cost(i, j) = min (CM(i, j), CI(i, j), CD(i, j))

• If Cost(i, j) = CM(i, j) then add S1(i) and S2(j) to the heads of
strings 1 and 2 respectively, and decrement i and j.

• If Cost(i, j) = CI(i, j) then add S1(i) to the head of strings 1,
and decrement i.

• If Cost(i, j) = CD(i, j) then add S2(j) to the head of strings 2,
and decrement j.
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Demo (contd)

[http : //baba.sourceforge.net]

Overall algorithm: Needleman-Wunsch algorithm.

Cost:

• Forward pass: O(NM) time (computations)
O(NM) space (memory)

• Backward pass: O(N+M) time
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Additive loss functions and log-probability

We formulated the cost of any alignment as a sum of penalties
for (mis)matches, insertions and deletions.

Can also formulate it in terms of the transition and emission
probabilities of a hidden Markov model (HMM).

A 3-state Markov chain: insert (I), delete (D), and pair (P).
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Additive loss functions and log-probability

If C(x) is the cost of config x, then the probability P(x) is:

P(x) ∝ exp(−C(x))

Minimizing cost ≡ Maximizing prob. (Maximum a posteriori)
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Additive loss functions and log-probability

Typical HMM has a simpler observation process

• Seq. alignment discards ∗’s and emission times

The transition probability of typical HMM is more complicated
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Conclusion

We looked at dynamic programming to solve complicated
looking problems by recursively solving simpler subproblems.

Next class we’ll focus on a special problem, viz. Kalman
filtering.
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