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PRELIMINARIES

HW1 is up on the course webpage
(due before class Tue, Sept 13)

Write up homework using knitr and R markdown

Submit HWs to course email (see lecture 1)
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DYNAMIC PROGRAMMING

Solve a complex problem by breaking it into simpler problems
Recursion without recalculation:

- Relate solution of a problem to solutions of simpler
problems (recursion)

- Identify and solve initial (base) problems

- Reuse existing solutions to compute more complicated
solutions (memoization)
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PROB 1: WHO IS THE TALLEST PERSON IN CLASS?

Setup: We can only compare heights one pair at a time.

Nalve approach: build a binary relation matrix:

a b N
a -1 ...
b O — ... 1
N O 0 ... —

O(N?) comparisons, but lots of redundancy.

Can we do better?
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PROB 2: ORDER-DEPENDENT SUMS

Pick a set of unique integers. E.g. {1,3,4}.
Find the number of ways to write N as sums of these.

E.g. for N =5, the answer is 6:

5=14+1+1+1+1
— L
=143+1
=34+1+1
—1+4
=441

http://web.stanford.edu/class/cs97si/

04-dynamic-programming.pdf
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ORDER-DEPENDENT SUMS (CONTD.)

How do we solve for N = 10007

Let Dy be the solution (e.g. Ds = 6).
Define a recursion. Observe that

- any sum ends with a 1,3 or 4.

- if the last term is J, the remaining sum to N — /.

* Dy = Dn—1 + Dn—3 + Dn—s
AlSO, Do=D1=D,=1,D3=2

ordered_sum <- function(N) {
D <- rep(1,N); D[c(3,4)] <- c(2, 3)
for(i in 5:N) {
D[i] <- D[i-1] + D[i-3] + D[i-4] }
return(D[N]) }
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THE KNAPSACK PROBLEM

Given:

- a bag with (integer) capacity W lbs

- n types of objects, with integer weights (ws,...,w,) lbs and
positive value (vq,...,Vn)

- Unlimited objects of each type

Goal: Fill bag to maximize value V(W)
What is V(0)?

How about V(1) and V(2)?

Can we express V(i) in terms of V(j),j < i?

V(i) = maXiy<i V(i — wj) + v
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A 2-DIMENSIONAL DYNAMIC PROGRAM

Want to align nucleotides in two DNA sequences
Similarity can suggest functionality of a newly sequenced gene

Russell Doolittle and colleagues found similarities between
cancer-causing gene and normal growth factor (PDGF) gene

Simple sources of misalignment:

Substitution: A-A-C-T-G-G-A
A-A-C-T-C-G-A
Insertion: A-A-C-G-G-A
A-A-C-*-G-A
Deletion: A-A-C-T-+-G-A

A-A-C-T-C-G-A
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SEQUENCE ALIGNMENT
Given two sequences:

A-A-C-T-A-T-G-G-C-C-A
A-C-A-C-T-A-T-G-G-C-T

What is the best alignment?
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SEQUENCE ALIGNMENT

Given two sequences:

A-A-C-T-A-T-G-G-C-C-A
A-C-A-C-T-A-T-G-G-C-T

Define a distance between two sequences:
- Each substitution has a cost Cs
- Each insertion/deletion has a cost Cg (gap penalty)

- In practice, these can depend on the nucleotides
A-A-%-C-T-A-T-G-G-C-C-A
A-C-A-C-T-A-T-G-G-*-C-T

This alignment has cost 2Cs + 2Cg.
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DYNAMIC PROGRAMMING RECURSION

Consider aligning to two strings S; and S, of length i and j:
S1=..-G-C-C-A and S; =..-G-G-C-T
Three possibilities:

- The last two characters are matched:

A Cm(i,J)) =  Cost(i—1,j— 1)+ Cost of match-
T ing elements S4(1) and Sy()).

- A gap in the first string:
w—k C(1,)) = Cost(i,j — 1)+ Cost of inserting
T gap after Sy()).

- A gap in the second string:
A Co(l,)) = Cost(i — 1,j)+ Cost of inserting
w—k gap after S;(1).

The actual (best) cost:

Cost(i,j) = min (Cu(i,j), (i, )), Co(i,))) 96



[http : //baba.sourceforge.net]
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BACKTRACKING

Forward recursion only returns cost of the best alignment.
What is this alignment?

Compute via a
Recall: COSt(’a]) = min (CM(Iaj)a C/(ivj)a CD(’?]))

- If Cost(i,J) = Cm(I,J) then add S;(i) and S,(j) to the heads of
strings 1 and 2 respectively, and decrement i and J.

- If Cost(i,J) = Ci(i,j) then add S;(i) to the head of strings 1,
and decrement .

- If Cost(i,J) = Cp(i,J) then add S;(j) to the head of strings 2,

and decrementj.
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DEMO (CONTD)

[http : //baba.sourceforge.net]

Overall algorithm: Needleman-Wunsch algorithm.

Cost:

- Forward pass: O(NM) time (computations)
O(NM) space (memory)

- Backward pass: O(N + M) time
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ADDITIVE LOSS FUNCTIONS AND LOG-PROBABILITY

We formulated the cost of any alignment as a sum of penalties
for (mis)matches, insertions and deletions.

Can also formulate it in terms of the transition and emission
probabilities of a hidden Markov model (HMM).

A 3-state Markov chain: insert (/), delete (D), and pair (P).
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ADDITIVE LOSS FUNCTIONS AND LOG-PROBABILITY

Pp

~®

t—2
If C(x) is the cost of config x, then the probability P(x) is:

P(x) o< exp(—C(x))

Minimizing cost = Maximizing prob. (Maximum a posteriori)
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ADDITIVE LOSS FUNCTIONS AND LOG-PROBABILITY
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ADDITIVE LOSS FUNCTIONS AND LOG-PROBABILITY

Pp Py Pp Pp
(-9} ! ;! o ; i ;

t—2 t-1 t t+1
If C(x) is the cost of config x, then the probability P(x) is:
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ADDITIVE LOSS FUNCTIONS AND LOG-PROBABILITY

Pp Py Pp Pp

(1-9% ! %! €T ; ;

1
G 4

t—2 t-1 t t+1

Typical HMM has a simpler observation process
- Seq. alignment discards *'s and emission times

The transition probability of typical HMM is more complicated
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CONCLUSION

We looked at dynamic programming to solve complicated
looking problems by recursively solving simpler subproblems.

Next class we'll focus on a special problem, viz. Kalman
filtering.
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