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SOLVING A SYSTEM OF LINEAR EQUATIONS

Consider AX = b, where Ais N x N, and Xand b are N x k.
Solve forx: X=A""b
Calculate the inverse of A and multiply? No!

- Directly solving for X is faster, and more stable numerically
- A7" need not even exist
> solve(A,b) # Directly solve for b

> solve(A) %*% b  # Return inverse and multiply

http://www.johndcook.com/blog/20106/01/19/
dont-invert-that-matrix/
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http://www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix/
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GAUSS-JORDAN ELIMINATION

A-X=b
A-[X, A ] =[b, 1]

1 0 1 X1 Vi1 Vo Vi3 4 1 0 O
2 0 1 X2 Vo1 Voo Vo3[ =110 0 1 O
17 =2 -1 X3 V31 V3 V33 3 0 0 1

Manipulatetoget: [-[X, A7 =[&, G
At step i
- Make element a;; = 1 (by scaling or pivoting)

- Set other elements in column j to 0 by multiplying and
subtracting that row
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GAUSS-JORDAN ELIMINATION

1 0 1 X1 V11 Vo Vi3 4 1 0 0
2 0 1 X2 Vo1 Voo V3 =110 0 1 O
17 =2 -1 X3 V31 V3 V33 3 0 0 1
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GAUSS-JORDAN ELIMINATION

1 0 1 X1 V11 Vo Vi3 4 1 0 O
2 0 1 X2 Vo1 Voo V3 =110 0 1 O
17 =2 -1 X3 V31 V3 V33 3 0 0 1

Multiply row 1 by 2 and subtract
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GAUSS-JORDAN ELIMINATION

1 0 1 X1 Vi1 Vi Vi3 4 1 0 0
0 0 —1 X2 Vo1 Voo V3l =12 =2 1 O
-2 -1 X3 V31 Vi3 V33 3 0 0 1
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GAUSS-JORDAN ELIMINATION

1 0 1 X1 V11 Vo Vi3 4 1 0 0
0 0 -1 X2 Vp1 Vpp Vp3| = 2 -2 10
0 -2 =2 X3 V31 V3 V33 -1 =1 0 1

Subtract row 1
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GAUSS-JORDAN ELIMINATION

1 0 1 X1 V11 Vo Vi3 4 1 0 0
0 -2 =2 X2 Vo1 Voo V3l =1-1 =1 0 1
0 0 —1 X3 V31 V3 V33 2 -2 1 0

Pivot
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GAUSS-JORDAN ELIMINATION

7 0 O X1 Vi1 Vi Vi3 6 -1 1 0
0 1 0 X2 Vpy1 Vpp V3| = 25 =15 1 0.5
0 0 1 X3 V31 V3 V33 —2 2 —1 0

Continue till we get an identity matrix
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GAUSS-JORDAN ELIMINATION

7 0 O X1 Vi1 Vi Vi3 6 -1 1 0
0 1 0 X2 Vpy1 Vpp V3| = 25 =15 1 0.5
0 0 1 X3 V31 V3 V33 —2 2 —1 0

What is the cost of this algorithm?

323



GAUSS ELIMINATION WITH BACK-SUBSTITUTION

A (X, AT ] =[b, I]
O(N3) manipulation to get:
u-[x, AT ] =16, G

Here, U is an upper-triangular matrix.

Cannot just read off solution. Need to backsolve.
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LU DECOMPOSITION

What are we actually doing?
A=1LU

Here L and U are lower and upper triangular matrices.

1 0 0 Uy U U1z
= 121 1 of, U= 0 Upy Up3
37 l3 1 0 0 Uz

Is this always possible?
A 0 1
17 0
PA = LU, Pisa permutation matrix

Crout’s algorithm, O(N?), stable, L, U can be computed in place.
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BACKSUBSTITUTION

AX=1>b

LUX=Pb

First solve Y by forward substitution

LY =Pb
10 0] [ b,
i 1 0| |v2| = |b2
31 2 1] |y3 bs

Then solve X by back substitution

UuxX=yY
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COMMENTS

- LU-decomposition can be reused for different b’s.

- Calculating LU decomposition: O(N?).

- Given LU decomposition, solving for X: O(N?).

<Al = [P = (=TT, u;  (S: num. of exchanges)

- LUA=" =PI, can solve for A~". (back to Gauss-Jordan)
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CHOLESKY DECOMPOSITION

If Ais symmetric positive-definite:

A=LLT

- ‘Square-root’ of A
- More stable.

- Twice as efficient.
- Related: A= LDL".
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EIGENVALUE DECOMPOSITION

An N x N matrix A: a map from RV — RV,
An eigenvector v undergoes no rotation:

Av = A\v

A is the corresponding eigenvalue, and gives the ‘rescaling’.

Let A =diag(M,- -+, An) with A1 > Ag, ..., Ay, and
V =[w,---,vy] be the matrix of corresponding eigenvectors

AV = VA
Real Symmetric matrices have

- real eigenvalues
- different eigenvalues have orthogonal eigenvectors
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GAUSS-JORDAN ELIMINATION

10 7 8 77 [x 32
7 5 6 5| x| _ |23
8 6 10 9| [x3| [33
7 5 9 10| |x 31

What is the solution? How about for b = [32.1,22.9,33.1,30.9]"?
Why the difference?

- the determinant?
- the inverse?
- the condition number?

An ill-conditioned problem can strongly amplify errors.

- Even without any rounding error
10/23



STABILITY ANALYSIS

The norm of a matrix A is
[All2 = [IA[ = max [|Av]]
llvi|=1
For a symmetric, real matrix, ||A|| = Amax(A) (why?)

For a general, real matrix, [|A|| = v/Amax(ATA) (why?)

For Ain R"N and any v e RV,

IAv < [IAflIvIE - (why?)
If A= BC, and all matrices are in RV*V,

IAlF < IBIIICl (why?)
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STABILITY ANALYSIS

For a perturbation éb let 6x be the change in solution to Ax =b
A(X+0x) =b+db

l1ox|l
(Xl

is the relative change in the solution from the change H”‘;be”

From b = Ax and dx = A~'éb, we have:

IIXH - bl

Condition number of a matrix A is given by

K(A) = [[AIlIAT
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STABILITY ANALYSIS

x(A) > 1(why?)

For a real symmetric matrix, x(A) = A”n“fx((A; (why?)

For a real matrix, k(A) = Amf*éﬁ,ﬁ)) (why?)
Condition number is a property of a problem
Stability is a property of an algorithm

A bad algorithm can mess up a simple problem
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GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

Consider reducing to upper triangular

Vi V2o Vi3
Vo1 Vo V3
V31 V3 V33

Gaussian elimination: divide row 1 by vy
Partial pivoting: Pivot rows to bring max v, to top
Can dramatically improve performance. E.g.

le—4 1
1 1

Why does it work?
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GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

Recall Gaussian elimination decomposes A = LU and solves
two intermediate problems.

What are the condition numbers of L and U?

Try
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QR DECOMPOSITION

In general, for A = BC, k(A) < k(B)x(C)  (why?)

QR decomposition:
A=Q0R

Here, R is an upper (right) triangular matrix. Q is an
orthonormal matrix: Q'Q = |

K(A) = k(Q)K(R)
Can use to solve Ax = b (How?)
Most stable decomposition

Does this mean we should use QR decomposition?
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GRAM-SCHMIDT ORTHONORMALIZATION

Given N vectors X1, ..., Xy construct an orthonormal basis:
Ur = X/||xa]]
Oy =x — X (xupu;,  uj=0/G) i=2...,N

Modified Gram-Schmidt

Uy = Xq/[|x1]]
- 0 =% — (xTu)uy,

- O = x; — (u]u)uy,

< oup =G/ dgl
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QR DECOMPOSITION

A = Q R
ay QG an3 dn gu2 qui| [ M N3
Ay 4p 3| = |92 G2 qxz| |0 2 I3
a4z a3 G Q932 Qg33| |0 0 r33

QR decomposition: Gram-Schmidt on columns of A
(can you see why?)

Of course, there are more stable/efficient ways of doing this
(Householder rotation/Givens rotation)

O(N3) algorithms (though about twice as slow as LU)
18/23



CALCULATING EIGENVALUES AND -VECTORS

Let A be any real symmetric matrix.

How does one calculate its largest eigenvalue and vector?
Start with a random vector ug

Define u; = Aug, and normalize length.

Repeat: u; = Auj_, u; = u;/||ui|

U — vy (Why?)

The power method (Google's PageRank).
How would we calculate \?

What if we wanted the second eigenvector?
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QR ALGORITHM

Algorithm to calculate all eigenvalues/eigenvectors of a (not
too-large) matrix

Start with Ag = A

At iteration i

- Ai = QiR

C A = RiQ

Can be made this more stable/efficient.

One of Dongarra & Sullivan (2000)’s list of top 10 algoirithms.
https://www.siam.org/pdf/news/637.pdf

See also number 4, "decompositional approach to matrix
computations”
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MULTIVARIATE NORMAL

1 ) N 1
log(p(X|p, T)) = =5 (X = )/ T (X = ) — 5 log2m — - log ||

Y=LL"
Y=1""(X—p) (Forward solve)

1 N
log(p(X|p, X)) = =5 Y'Y — = log2r — log |7

Can also just forward solve for L=": LL™" = |
(Inverted triangular matrix isn’t too bad)
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SAMPLING A MULTIVARIATE NORMAL

Sampling a univariate normal:

- Inversion method (default for rnorm?).

- Box-Muller transform: (Z;,Z;) : independent standard
normals.

- Let Z ~ N(0,1)
X=p+LZ
2= N(u,LL)
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