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Solving a system of linear equations

Consider AX = b, where A is N× N, and X and b are N× k.

Solve for X: X = A−1b

Calculate the inverse of A and multiply? No!

• Directly solving for X is faster, and more stable numerically
• A−1 need not even exist

> solve(A,b) # Directly solve for b
> solve(A) %*% b # Return inverse and multiply

http://www.johndcook.com/blog/2010/01/19/
dont-invert-that-matrix/
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Gauss-Jordan elimination

A · X = b
A ·

[
X , A−1

]
= [ b , I ]

1 0 1
2 0 1
1 −2 −1


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

 4 1 0 0
10 0 1 0
3 0 0 1


Manipulate to get: I ·

[
X , A−1

]
= [ ĉ1 , Ĉ2 ]

At step i:

• Make element aii = 1 (by scaling or pivoting)
• Set other elements in column i to 0 by multiplying and
subtracting that row
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Gauss-Jordan elimination

1 0 1
2 0 1
1 −2 −1


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

 4 1 0 0
10 0 1 0
3 0 0 1
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Gauss-Jordan elimination

1 0 1
2 0 1
1 −2 −1


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

 4 1 0 0
10 0 1 0
3 0 0 1


Multiply row 1 by 2 and subtract
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Gauss-Jordan elimination

1 0 1
0 0 −1
1 −2 −1


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

4 1 0 0
2 −2 1 0
3 0 0 1
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Gauss-Jordan elimination

1 0 1
0 0 −1
0 −2 −2


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

 4 1 0 0
2 −2 1 0
−1 −1 0 1


Subtract row 1
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Gauss-Jordan elimination

1 0 1
0 −2 −2
0 0 −1


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

 4 1 0 0
−1 −1 0 1
2 −2 1 0


Pivot
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Gauss-Jordan elimination

1 0 0
0 1 0
0 0 1


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

 6 −1 1 0
2.5 −1.5 1 0.5
−2 2 −1 0


Continue till we get an identity matrix
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Gauss-Jordan elimination

1 0 0
0 1 0
0 0 1


x1 v11 v12 v13
x2 v21 v22 v23
x3 v31 v32 v33

 =

 6 −1 1 0
2.5 −1.5 1 0.5
−2 2 −1 0


What is the cost of this algorithm?
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Gauss elimination with back-substitution

A ·
[
X , A−1

]
= [ b , I ]

O(N3) manipulation to get:

U ·
[
X , A−1

]
= [ ĉ1 , Ĉ2 ]

Here, U is an upper-triangular matrix.

Cannot just read off solution. Need to backsolve.
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LU decomposition

What are we actually doing?

A = LU

Here L and U are lower and upper triangular matrices.

L =

 1 0 0
l21 1 0
l31 l32 1

 ,U =

u11 u12 u13
0 u22 u23
0 0 u33


Is this always possible?

A =

[
0 1
1 0

]

PA = LU, P is a permutation matrix

Crout’s algorithm, O(N3), stable, L,U can be computed in place.
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Backsubstitution

AX = b

LUX = Pb

First solve Y by forward substitution

LY = Pb 1 0 0
l21 1 0
l31 l32 1


y1y2
y3

 =

b̂1b̂2
b̂3


Then solve X by back substitution

UX = Y
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Comments

• LU-decomposition can be reused for different b’s.
• Calculating LU decomposition: O(N3).
• Given LU decomposition, solving for X: O(N2).
• |A| = |P−1LU| = (−1)S

∏N
i=1 uii (S: num. of exchanges)

• LUA−1 = PI, can solve for A−1. (back to Gauss-Jordan)
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Cholesky decomposition

If A is symmetric positive-definite:

A = LLT

• ‘Square-root’ of A
• More stable.
• Twice as efficient.
• Related: A = LDLT.
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Eigenvalue decomposition

An N× N matrix A: a map from RN → RN.
An eigenvector v undergoes no rotation:

Av = λv

λ is the corresponding eigenvalue, and gives the ‘rescaling’.

Let Λ = diag(λ1, · · · , λN) with λ1 ≥ λ2, . . . , λN, and
V = [v1, · · · , vN] be the matrix of corresponding eigenvectors

AV = VΛ

Real Symmetric matrices have

• real eigenvalues
• different eigenvalues have orthogonal eigenvectors
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Gauss-Jordan elimination
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32
23
33
31


What is the solution? How about for b = [32.1, 22.9, 33.1, 30.9]T?

Why the difference?

• the determinant?
• the inverse?
• the condition number?

An ill-conditioned problem can strongly amplify errors.

• Even without any rounding error
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Stability analysis

The norm of a matrix A is

∥A∥2 = ∥A∥ = max
∥v∥=1

∥Av∥

For a symmetric, real matrix, ∥A∥ = λmax(A) (why?)

For a general, real matrix, ∥A∥ =
√

λmax(ATA) (why?)

For A in RN×N and any v ∈ RN,

∥Av∥ ≤ ∥A∥∥v∥ (why?)

If A = BC, and all matrices are in RN×N,

∥A∥ ≤ ∥B∥∥C∥ (why?)
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Stability analysis

For a perturbation δb let δx be the change in solution to Ax = b

A(x+ δx) = b+ δb

∥δx∥
∥x∥ is the relative change in the solution from the change ∥δb∥

∥b∥

From b = Ax and δx = A−1δb, we have:

∥δx∥
∥x∥ ≤ ∥A∥∥A−1∥∥δb∥

∥b∥

Condition number of a matrix A is given by

κ(A) = ∥A∥∥A−1∥
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Stability analysis

κ(A) ≥ 1 (why?)

For a real symmetric matrix, κ(A) = λmax(A)
λmin(A)

(why?)

For a real matrix, κ(A) =
√

λmax(ATA)
λmin(ATA)

(why?)

Condition number is a property of a problem

Stability is a property of an algorithm

A bad algorithm can mess up a simple problem
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Gaussian elimination with partial pivoting

Consider reducing to upper triangularv11 v12 v13
v21 v22 v23
v31 v32 v33


Gaussian elimination: divide row 1 by v11

Partial pivoting: Pivot rows to bring max v∗1 to top

Can dramatically improve performance. E.g.[
1e− 4 1
1 1

]
Why does it work?
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Gaussian elimination with partial pivoting

Recall Gaussian elimination decomposes A = LU and solves
two intermediate problems.

What are the condition numbers of L and U?

Try[
1e− 4 1
1 1

]
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QR decomposition

In general, for A = BC, κ(A) ≤ κ(B)κ(C) (why?)

QR decomposition:
A = QR

Here, R is an upper (right) triangular matrix. Q is an
orthonormal matrix: QTQ = I

κ(A) = κ(Q)κ(R)

Can use to solve Ax = b (How?)

Most stable decomposition

Does this mean we should use QR decomposition?
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Gram-Schmidt orthonormalization

Given N vectors x1, . . . , xN construct an orthonormal basis:

u1 = x1/∥x1∥

ũi = xi −
∑i−1

j=1(xTi uj)ui, ui = ũi/∥ũi∥ i = 2 . . . ,N

Modified Gram-Schmidt

u1 = x1/∥x1∥
• ũi = xi − (xTi u1)u1,
• ũi = xi − (uTi u1)u2,
• · · ·
• ui = ũi/∥ũi∥

· · ·
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QR decomposition

A = Q R

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

q11 q12 q13
q21 q22 q23
q31 q32 q33


r11 r12 r13
0 r22 r23
0 0 r33



QR decomposition: Gram-Schmidt on columns of A
(can you see why?)

Of course, there are more stable/efficient ways of doing this
(Householder rotation/Givens rotation)

O(N3) algorithms (though about twice as slow as LU)
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Calculating eigenvalues and -vectors

Let A be any real symmetric matrix.

How does one calculate its largest eigenvalue and vector?

Start with a random vector u0

Define u1 = Au0, and normalize length.

Repeat: ui = Aui−1, ui = ui/∥ui∥

ui → v1 (Why?)

The power method (Google’s PageRank).

How would we calculate λ1?

What if we wanted the second eigenvector?
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QR algorithm

Algorithm to calculate all eigenvalues/eigenvectors of a (not
too-large) matrix

Start with A0 = A

At iteration i:

• Ai = QiRi
• Ai+1 = RiQi

Can be made this more stable/efficient.

One of Dongarra & Sullivan (2000)’s list of top 10 algoirithms.
https://www.siam.org/pdf/news/637.pdf

See also number 4, ”decompositional approach to matrix
computations”
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Multivariate normal

log(p(X|µ,Σ)) = − 12(X− µ)TΣ−1(X− µ)− N
2 log 2π − 1

2 log |Σ|

Σ = LLT

Y = L−1(X− µ) (Forward solve)

log(p(X|µ,Σ)) = − 12Y
TY− N

2 log 2π − log |Σ|

Can also just forward solve for L−1: LL−1 = I
(Inverted triangular matrix isn’t too bad)
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Sampling a multivariate normal

Sampling a univariate normal:

• Inversion method (default for rnorm?).
• Box-Muller transform: (Z1, Z2) : independent standard
normals.

• Let Z ∼ N (0, I)
• X = µ+ LZ
• Z = N (µ, LTL)
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