LECTURE 18: ROOT-FINDING AND

MINIMIZATION
STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao
Purdue University

November 22, 2016

ROOT-FINDING IN ONE-DIMENSION

Given some nonlinear function f: R — R, solve

fx) =0
Invariably need iterative methods.
Assume fis continuous (else things are really messy).
More we know about f (e.g. gradients), better we can do.

Better: faster (asymptotic) convergence.

117

ROOT BRACKETING

f(a) and f(b) have opposite signs — root lies in (a, b).

a and b bracket the root.

Finding an initial bracketing can be non-trivial.
Typically, start with an initial interval and expand or contract.

Below, we assume we have an initial bracketing.

217

ROOT BRACKETING

f(a) and f(b) have opposite signs — root lies in (a, b).

a and b bracket the root.

Finding an initial bracketing can be non-trivial.
Typically, start with an initial interval and expand or contract.

Below, we assume we have an initial bracketing.

Not always possible e.g. f(x) = (x — a)? (in general, multiple
roots/nearby roots lead to trouble).

217

BISECTION METHOD
Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.

But is slower than other methods.

Successively halves the bracketing interval (binary search):

c/ o_
- Current interval = (a,b)
- Set ¢= b

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

317

BISECTION METHOD

Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.
But is slower than other methods.

Successively halves the bracketing interval (binary search):

e
L

_/

- Current interval = (a,b)
- Set ¢= b

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

317

BISECTION METHOD

Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.
But is slower than other methods.

Successively halves the bracketing interval (binary search):

74%
—

- Current interval = (a,b)
- Set ¢= b

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

317

BISECTION METHOD

Simplest root-finding algorithm.
Given an initial bracketing, cannot fail.
But is slower than other methods.

Successively halves the bracketing interval (binary search):

- Current interval = (a,b)
- Set ¢= b

- New interval = (a,c) or (c,b)

(whichever is a valid bracketing)

317

BISECTION METHOD (CONTD)

Let e, be the interval length at iteration n.
Upperbounds error in root.

eny1 = 0.5 €p (Linear convergence)

47

BISECTION METHOD (CONTD)

Let e, be the interval length at iteration n.
Upperbounds error in root.

eny1 = 0.5 €p (Linear convergence)

Linear convergence:

- each iteration reduces error by one significant figure.
- every (fixed) k iterations reduces error by one digit.
- error reduced exponentially with the number of iterations.

47

BISECTION METHOD (CONTD)

Let e, be the interval length at iteration n.
Upperbounds error in root.

eny1 = 0.5 €p (Linear convergence)

Linear convergence:

- each iteration reduces error by one significant figure.
- every (fixed) k iterations reduces error by one digit.

- error reduced exponentially with the number of iterations.

Superlinear convergence:
m lena| = Cx [en™ (M >1)

Quadratic convergence:
Number of significant figures doubles every iteration.

47

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

7
<

57

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

Secant method: _/

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

nll_[go ‘€n+1’ — Cx ‘6n|1'618

- Bracketing (and thus convergence) not guaranteed.

57

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

Secant method: _/

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

nll_[go ‘€n+1’ — Cx ‘6n|1'618

- Bracketing (and thus convergence) not guaranteed.

57

SECANT METHOD AND BISECTION METHOD

Linearly approximate f to find new approximation to root.

Secant method: J

- always keep the newest point
- Superlinear convergence (m = 1.618, the golden ratio)

|.|m ‘En_i_]’ =Cx ‘6n|1'618
n—o0

- Bracketing (and thus convergence) not guaranteed.
False position:

- Can choose an old point that guarantees bracketing.
- Convergence analysis is harder.

57

PRACTICAL ROOT-FINDING

In practice, people use more sophiticated algorithms.
Most popular is Brent's method.

Maintains bracketing by combining bisection method with a
quadratic approximation.

Lots of book-keeping.

617

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

N7

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

Taylor expansion: f(x+9) = f(x) + 6f (x) + ‘5—22]"’()() + -

N7

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

Taylor expansion: f(x+9) = f(x) + 6f (x) + i;ﬂ’(x) + -

Assume second- and higher-order terms are negligible.
Given x;, choose Xj,1 = X; + ¢ so that f(xj;4) = 0:

N7

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

At any point uses both function evaluation as well as
derivative to form a linear approximation.

Taylor expansion: f(x+9) = f(x) + 6f (x) + i;ﬁ’(x) + -

Assume second- and higher-order terms are negligible.
Given x;, choose Xj,1 = X; + ¢ so that f(xj;4) = 0:

0 = f(x;) + of (x)

Xiy1 = X — f(xi)/f (%)
7

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

Xiy1 = x;j — f(xi)/f (%)

7
_

8/17

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

Xiy1 = x;j — f(xi)/f (%)

8/17

NEWTON’S METHOD (A.K.A. NEWTON-RAPHSON)

Xiy1 = x;j — f(xi)/f (%)

s

8/17

CONVERGENCE OF NEWTON'S METHOD

Letting x be the root, we have

Xiyr — X = X;i — X = f(x;)) /f (x;)
€1 = & — f(xi)/f (x;)

917

CONVERGENCE OF NEWTON'S METHOD

Letting x be the root, we have
Xig1 — X =X —x = f(x)/f (x))
€i1 = € — f0)/f (%)

Also,
2

706) = F0) + 6 () + L7(3)

917

CONVERGENCE OF NEWTON'S METHOD

Letting x be the root, we have

Xiyr — X = X;i — X = f(x;)) /f (x;)
€1 = & — f(xi)/f (x;)

Also,
6-2
o) 2 F0 + ef () + L1(x)
This gives
= f(x) &2
)

917

CONVERGENCE OF NEWTON’S METHOD

Letting x be the root, we have
Xipr — X = X; — X — f(x;)) /f (%)
eipr = € — f(x;)/f (i)

Also,
2

706) = F0) + 6 () + L7(3)

This gives

o= f(x) 2
(k)

Quadratic convergence (assuming f(x) is non-zero at the root)

917

PITFALLS OF NEWTON'S METHOD

/

Away from the root the linear approximation can be bad.
Can give crazy results (go off to infinity, cycles etc.)

However, once we have a decent solution can be used to
rapidly ‘polish the root'.

Often used in combination with some bracketing method.

1047

ROOT-FINDING FOR SYSTEMS OF NONLINEAR EQUATIONS

Find (xq,--- ,Xxy) such that:

F,’(X1,‘~-,XN):0 i=1toN
Much harder than the 1-d case.

Much harder than optimization.

117

NEWTON’S METHOD

Again, consider a Taylor expansion:

F(x + 0x) = F(x) +J(x) - x + O(6x%)

_ OF

Here, J(x) is the Jacobian matrix at x, with J; = e

12417

NEWTON’'S METHOD

Again, consider a Taylor expansion:

F(x + 0x) = F(x) +J(x) - x + O(6x%)

_ OF

Here, J(x) is the Jacobian matrix at x, with J; = e

Again, Newton's method finds 6x by solving F(x 4+ 6x) = 0
J(x) - 0x = —F(x)

Solve e.g. by LU decomposition.

12417

NEWTON’'S METHOD

Again, consider a Taylor expansion:
F(x + 0x) = F(x) +J(x) - x + O(6x%)

Here, J(x) is the Jacobian matrix at x, with J; = g—;{'.

Again, Newton's method finds 6x by solving F(x 4+ 6x) = 0
J(x) - 0x = —F(x)

Solve e.g. by LU decomposition.
Iterate Xpew = Xoiq + 0X until convergence.

Can wildly careen through space if not careful.
1217

Recall, we want to solve F(x) =0 (Fi(x) =0, i=1---N).

13/7

GLOBAL METHODS VIQ OPTIMIZATION

Recall, we want to solve F(x) =0 (Fi(x)=0, i=1---N).

Minimize f(x) = 1 M [F(X) 2 = 1|F(x)

2 = JF(x) - F(x).

Note: It is NOT sufficient to find a local minimum of f.

13417

GLOBAL METHODS VIA OPTIMIZATION)
We move along éx instead of Vf = F(x)J(x).

This keeps our global objective in sight.

1417

GLOBAL METHODS VIA OPTIMIZATION)

We move along éx instead of Vf = F(x)J(x).

This keeps our global objective in sight.

1417

NEWTON’S METHOD WITH BACKTRACKING

A full Newton step sets Xpew = Xg1g + OX.

This can cause fto increase i.e. f(Xnew > f(Xo(q)-
In this case, backtrack and set Xpew = Xoig + A0X, A € (0,1).
Since 6x is a descent direction, there exists a sufficiently small

A that causes f to decrease.

15/17

NEWTON’S METHOD WITH BACKTRACKING

A full Newton step sets Xpew = Xg1g + OX.

This can cause fto increase i.e. f(Xnew > f(Xo(q)-

In this case, backtrack and set Xpew = Xoig + A0X, A € (0,1).

Since 6x is a descent direction, there exists a sufficiently small
A that causes f to decrease.

Finding best X\: too much work usually.

However, just causing f to decrease is not sufficient.

15/17

WOLFE CONDITIONS

Small steps getting us

Big steps with little decrease
nowhere

16/17

WOLFE CONDITIONS

Small steps getting us

Big steps with little decrease
nowhere

Avg. decrease at least some fraction of initial rate:

f(X + Aox) < f(X) + 1A (V] - 6x), ¢ €(0,17) e.g.0.9

16/17

WOLFE CONDITIONS

Small steps getting us

Big steps with little decrease
nowhere

Avg. decrease at least some fraction of initial rate:
f(x + Aox) < f(x) + A (VS - 6x), ¢ €(0,1) e.g.0.9
Final rate is greater than some fraction of initial rate:

V(X 4+ Adx) - 6x > 2 VF(X)dx, c; € (0,1) e.g. 0.1
16/17

WOLFE CONDITIONS

F@) +AVS 0z Sy

A

Permissible \’s under condition 1

17/7

WOLFE CONDITIONS

\ S 3>
>

Permissible A\’s under condition 2

17/7

