
lecture 16: markov chain monte carlo
(contd)
STAT 545: Intro. to Computational Statistics

Vinayak Rao
Purdue University

November 14, 2016



Markov chain Monte Carlo

Obtain dependent samples (x1, x2, . . .) by running an
irreducible, aperiodic, positive recurrent Markov chain on X .

Ensure right stationary distribut. via detailed balance:

π(xn+1)K(xn, xn+1) = π(xn)K(xn+1, xn)

Means that p(xn = a, xn+1 = b) = p(xn = b, xn+1 = a) for any
n,a,b.
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Markov chain Monte Carlo

We saw two simple MCMC algorithms

An iteration of the Metropolis-Hastings algorithm:

• Propose a new point x∗ according to q(x∗|xn).
• Accept with prob. α = min

(
1, π(x

∗)q(xn|x∗)
π(xn)q(x∗|xn)

)

An iteration of the Gibbs sampling algorithm:

• Let the state at iteration n be xn = (x1n, x2n, . . . , xdn).
• Set y = xn.
• Update y by resampling yi ∼ π(·|y¬i) for i ∈ {1, . . . ,d}
• Set = xn+1 = y.
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A few points on the Gibbs sampler

Ki: kernel that samples component i from its conditional
distrib.

Ki(xn+1, xn) =

0, if xjn+1 ̸= xjn for any j ̸= i,
π(xin+1|x¬in ), otherwise

Clearly Ki has π as its stationary distribution:
If xn ∼ π, then xn+1 ∼ π.
However, it is not irreducible. For this, we must either:

• Cycle through components: K = K1 ◦ K2 ◦ · · · ◦ Kd
(Composition of kernels)

• Randomly pick components: K = ν1K1 + ν2K2 + · · ·+ νdKd
(Mixture of kernels)
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New Markov kernels from old

In general, composing or mixing kernels with π as the
stationary distribution gives a new kernel with π as stationary.

You should be able to prove this starting with two kernels.

Thus can alternate between or randomly perform MH and
Gibbs.
Can cycle randomly or deterministically between MH kernels
with different proposal distributions

Careful though:
Should not depend on some statistic of all earlier samples
(e.g. the acceptance rate).
Cannot naively let you mixing proportions depend on location
in X .
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Metropolis-within-Gibbs

Sometimes Gibbs sampling from the conditionals isn’t easy:

Ki(xn+1, xn) =

0, if xjn+1 ̸= xjn for any j ̸= i,
π(xin+1|x¬i), otherwise

Use a ‘sub-kernel’ that has π(xin+1|x¬i) as it’s invariant
distribution:

Ki(xn+1, xn) =

0, if xjn+1 ̸= xjn for any j ̸= i,
ki(xin+1|xn), otherwise

Common to define ki(xin+1|xn) via a MH-step:
Propose xin+1 ∼ q(·|xn) = q(·|{x¬i, xin})

Accept with prob. min
(
1, π(x

i
n+1|x¬i)q(xin|{x¬i,xin+1})

π(xin|x¬i)q(xin+1|{x¬i,xin})

)
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Data augmentation schemes

Data augmentation:
Introduce auxiliary variables we do not care about.

If we want to run a Markov chain on X .
Introduce auxiliary variables y ∈ Y and run chain on X × Y .
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MCMC
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MH is a random walk on X .
Make ‘blind proposals’ and evaluate with π.
N steps takes you

√
N-distance.
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MCMC
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Gibbs sampler explores X -space one component at a time.
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MCMC
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Hamiltonian Monte Carlo: Exploit gradient-information about
π(x) = f(x)/Z to explore X more efficiently
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Slice sampling
Uniformly sampling below f(x) gives samples from π(x) ∝ f(x).
Slice sampling augments the x with a height y.
Runs a Markov chain by updating (x, y).

9/1



Slice sampling

Sample y0 ∼ P(·|x0) = Unif(0, f(x0))
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Slice sampling
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Slice sampling

Given y0, sample

x1 ∼ p(·|y0) = Unif(Ly0),where Lx = {x : f(x) > y0})

Not easy.
Make conditional updates: x1 ∼ p(·|x0, y0) 9/1



Slice sampling

Randomly locate a window R around x0; pick x1 ∼ Unif(R ∩ Ly).
Observe: if x0 (green), is Unif(y0), then so is x1 (red). Randomly
locating window ensures reversibility.
NOT irreducible: can’t jump between modes with long 0-prob
valleys
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Slice sampling

Fix: grow window until both ends greater than y0. Different pos-
sible strategies. A simple one:
• Let current window length be L.
• Double the length by adding L/2 segments to random sides.
• Repeat till both ends lie above f. 9/1



Slice sampling

Asymmetric growth allows us to reach any mode with nonzero
probability.
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Slice sampling

Now, uniformly pick points inside window. If point is invalid,
truncate window and repeat.
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Slice sampling

When we obtain a valid point, the preceding window can be
viewed as a random window with a bunch of auxiliary variables.
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Slice sampling

Note the overall process is reversible
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