
lecture 13: midterm review
STAT 545: Intro. to Computational Statistics

Vinayak Rao
Purdue University

October 18, 2016



Point estimation for exponential family models

Exponential family distribution:

p(x|θ) = 1
Z(θ)h(x) exp(θ

⊤ϕ(x))

ϕ(x) = [ϕ1(x), . . . , ϕD(x)] : (feature) vector of sufficient statistics
θ = [θ1, . . . , θD] : vector of natural parameters

Maximum likelihood estimation is Moment matching.
Given data X = {x1, . . . , xN}, set θ so that:

1
N

N∑
i=1

ϕ(xi) = Eθ[ϕ(x)] := µ (Moment parameters)

Clean, analytic solution.
Often mapping from moment to natural parameters is easy.
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Point est. for exp. fam. models w. missing data

Joint probability:

p(x, y|θ) = 1
Z(θ)h(x, y) exp(θ

⊤ϕ(x, y))

Given data X = {x1, . . . , xN}, we want θMLE:

p(x|θ) =
∫
Y

1
Z(θ)h(x, y) exp(θ

⊤ϕ(x, y))dy

This marginal probability is NOT exp. family. Need iterative
algorithms.
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Point est. for exp. fam. models w. missing data

If we knew Y, match moments to

1
N

N∑
i=1

ϕ(xi, yi)

EM algorithm:

• Initialize with arbitrary θ0.
• Repeat for i = 1 till convergence:
• Calculate q(Y) = P(Y|X,θi)
• Calculate θi+1 by matching moments to

1
N

N∑
i=1

Eq[ϕ(xi, yi)]

If matching moments for the first equation is easy, so is for the
second.
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Bayesian inference in exp. fam models

p(x|θ) = 1
Z(θ)h(x) exp(θ

⊤ϕ(x)) = h(x) exp(θ⊤ϕ(x)− log Z(θ))

We have prior info. about θ in the form of a prob. distribution.
We are interested not just in a point estimate, but the entire
posterior distribution (mean, mode, variance etc).

If the prior is conjugate

p(θ|a,b) ∝ exp(θ⊤a− log Z(θ)b)

p(θ|X, a,b) ∝ exp(θ⊤(a+
N∑
i=1

ϕ(xi))− log Z(θ)(b+ N))

= P(θ|a+
N∑
i=1

ϕ(xi),b+ N) (Same family as prior)
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