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Bayesian inference

Given a set of observations X, MLE maximizes the likelihood:

θMLE = argmax p(X|θ)

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a ‘prior’ probability p(θ).

Given observations, we can calculate the ‘posterior’:

p(θ|X) = p(X|θ)p(θ)
P(X)

We can calculate the maximum a posteriori (MAP) solution:

θMAP = argmax p(θ|X)

Point estimate discards information about uncertainty in θ
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Bayesian inference

Bayesian inference works with the entire distribution p(θ|X).

Allows us to maintain and propagate uncertainty.

In practice, these distributions are unwieldy.

Need approximations.

An exception: ‘Conjugate priors’.
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Conjugate exponential family priors

Let observations come from an exponential-family:

p(x|θ) = 1
Z(θ)h(x) exp(θ

⊤ϕ(x))

= h(x) exp(θ⊤ϕ(x)− ζ(θ)) with ζ(θ) = log(Z(θ))

Place a prior over θ:

p(θ|a,b) ∝ η(θ) exp(θ⊤a− ζ(θ)b)

Given a set of observations X = {x1, . . . , xN}

p(θ|X) ∝
( N∏
i=1

h(xi) exp(θ⊤ϕ(xi)− ζ(θ))

)
η(θ) exp(θ⊤a− ζ(θ)b)

∝ η(θ) exp
(
θ⊤

(
a+

N∑
i=1

ϕ(xi)
)

− ζ(θ)(b+ N)
)
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Conjugate priors (contd.)

Prior over θ: exp. fam. distribution with parameters (a,b).

Posterior: same family with parameters (a+
∑N

i=1 ϕ(xi),b+ N).

Rare instance where analytical expressions for posterior exists.

In most cases a simple prior quickly leads to a complicated
posterior, requiring Monte Carlo methods.
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Conjugate priors: Beta-Bernoulli example

Let x ∼ Bern(π), so that

p(x|π) = π1(x=1)(1− π)1(x=2)

= exp (1(x = 1) log(π) + (1− 1(x = 1)) log(1− π))

= (1− π) exp
(
1(x = 1) log π

1− π

)
=

1
1+ exp(θ) exp (ϕ(x)θ)

This is an exponential family distrib., with
θ = log π

1−π , ϕ(x) = 1(x = 1),h(x) = 1, Z(θ) = (1+ exp(θ)).
Defining ζ(θ) = log Z(θ) as in the previous slide,

p(x|θ) = exp (ϕ(x)θ − ζ(θ))
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Conjugate priors: Beta-Bernoulli example

If the parameter θ (or equivalently π) is unknown, Bayesian
inference places a prior on it.

As before, define an exp. fam. prior with parameters a⃗:

p(θ|⃗a) ∝ exp(a1θ + a2ζ(θ))

Then given data X = (x1, . . . , xN),

p(θ|⃗a, X) ∝ p(θ, X|⃗a)

∝ exp
((

a1 +
N∑
i=1

1(xi = 1)
)
θ + (a2 − N)ζ(θ)

)

Thus, the posterior is in the same family as the prior, but with
updated parameters

(
a1 +

∑N
i=1 1(xi = 1),a2 − N

)
.
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Conjugate priors: Beta-Bernoulli example

Looking at the prior more carefully, we see:

p(θ|⃗a) ∝ exp(a1θ + a2ζ(θ))

∝ exp
(
a1 log

π

1− π
+ a2 log(1− π)

)
∝ πa1(1− π)(a2−a1)

= πb1−1(1− π)(b2−1)

This is just the Beta(b1,b2) distribution, and you can check that
the posterior is Beta

(
b1 +

∑N
i=1 1(xi = 1),b2 +

∑N
i=1 1(xi = 2)

)
.

b1 and b2 are sometimes called pseudo-observations, and
capture our prior beliefs: before seeing any x’s our prior is as
if we saw b1 ones and b2 twos. After seeing data, we factor
actual observations into the pseudo-observations.
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Monte Carlo integration

We want to calculate integrals, often expectations:

µ := Ep[f] =
∫
X
f(x)p(x)dx
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Monte Carlo integration

We want to calculate integrals, often expectations:

µ := Ep[f] =
∫
X
f(x)p(x)dx

E.g.: probability a game of patience (solitaire) is solvable?

P(Solvable) = 1
|Π|
∑
Π

1(Π is solvable)
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Monte Carlo integration

We want to calculate integrals, often expectations:

µ := Ep[f] =
∫
X
f(x)p(x)dx

Where is the next observation marginalizing out hidden state?

P(Yt+1|Y1:t) ∝
∫

dXt
∫

dXt+1P(Yt+1|Xt+1)P(Xt+1|Xt)P(Xt|Y1:t)
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Monte Carlo integration

We want to calculate integrals, often expectations:

µ := Ep[f] =
∫
X
f(x)p(x)dx

Calculate ‘posterior expectations’:

Eθ|X[f] =
∫

dθf(θ)P(θ|X) ∝
∫

dθf(θ)P(X|θ)P(θ)
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Monte Carlo integration

µ := Ep[f] =
∫
X
f(x)p(x)dx

Sampling approximation: rather than visit all points in X ,
calculate a summation over a finite set.

µ ≈ 1
N

N∑
i=1

f(xi) := µ̂

Monte Carlo approximation:

• Obtain points by sampling from p(x): xi ∼ p
• Approximate integration with summation

µ̂ ≈ 1
N

N∑
i=1

f(xi)
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Monte Carlo integration

µ̂ =
1
N

N∑
i=1

f(xi)

If xi ∼ p,

Ep[µ̂] =
1
N

N∑
i=1

Ep[f] = µ Unbiased estimate

Varp[µ̂] =
1
NVarp[f], Error = StdDev ∝ N−1/2

1
N

N∑
i=1

f→ Ep(f) = µ as N→ ∞ Consistent estimate (LLN)
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Monte Carlo Sampling

Is this a good idea?

• In low-dims, worth considering numerical methods like
quadrature. In high-dims, these quickly become infeasible.

Simpson’s rule in d-dimensions, with N grid points:

error ∝ N−4/d

Monte Carlo integration:

error ∝ N−1/2

Independent of dimensionality!
• If unbiasedness is important to you.
• Very simple.
• Very modular: easily incorporated into more complex
models (Gibbs sampling)
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Generating random variables

• The simplest useful probability distribution Unif(0, 1).
• In theory, can be used to generate any other RV.
• Easy to generate uniform RVs on a deterministic computer?

No!

• Instead: pseudorandom numbers.
• Map a seed to a ‘random-looking’ sequence.
• Downside: http://boallen.com/random-numbers.html
• Upside: Can use seeds for reproducibility or debugging

> set.seed(1)
• Careful with batch/parallel processing.

12/25
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Generating random variables

R has a bunch of random number generators.

rnorm, rgamma, rbinom, rexp, rpoiss etc.

What if we want samples from some other distribution?
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Generating random variables

Inverse transform sampling

Let X have pdf p(x), and cdf F(x) = P(X ≥ x) =
∫ x
−∞ p(u)du

Let:
X ∼ p(·)
U = F(X)

Then U is Unif(0, 1)

Equivalently, sample U ∼ Unif(0, 1), and let X = F−1(U)
Then X ∼ p(·)

E.g. − log(U) is Exponential(1).
Usually hard to compute F−1.
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Rejection sampling

Let p(x) = f(x)
Z .

Probability of a sample in [x0, x0 +∆x] = p(x0)∆x.

If we sample points uniformly below the curve Mf(x):
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Rejection sampling

Let p(x) = f(x)
Z .

Probability of a sample in [x0, x0 +∆x] = p(x0)∆x.

If we sample points uniformly below the curve Mf(x):
Probability of a sample in [x0, x0 +∆x] = Mf(x0)∆X∫

X f(x0)dx
= p(x0)∆x.

How to do this (without sampling from p)?
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Rejection sampling

Let p(x) = f(x)
Z .

Probability of a sample in [x0, x0 +∆x] = p(x0)∆x.

If Mf(x) ≤ Nq(x) ∀x for constant N and distribution q(·)
Sample points uniformly under Nq(x).
(sample x0 ∼ q(·), and assign it a uniform height in [0,Nq(x0)]
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Rejection sampling

Let p(x) = f(x)
Z .

Probability of a sample in [x0, x0 +∆x] = p(x0)∆x.

If Mf(x) ≤ Nq(x) ∀x for constant N and distribution q(·)
Sample points uniformly under Nq(x).
Keep only points under Mf(x).
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Rejection sampling

Let p(x) = f(x)
Z .

Probability of a sample in [x0, x0 +∆x] = p(x0)∆x.

Equivalent algorithm:
• Propose x∗ ∼ q(·)
• Accept with probability Mf(x∗)/Nq(x∗)
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Rejection sampling

Let p(x) = f(x)
Z .

Probability of a sample in [x0, x0 +∆x] = p(x0)∆x.

We need a bound on f(x).
A loose bound leads to lots of rejections.
Probability of acceptance = MZ

N .
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Intractable normalization constants

A probability density takes the form p(x) = f(x)
Z

• Z =
∫
X f(x)dx is the normalization contant

• Ensures probability integrates to 1

Often Z is difficult to calculate (intractable integral over f(x))

Consequently, evaluating p(x) is hard

However, rejection sampling doesn’t need Z or p(x)
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Rejection sampling (contd.)

Example 1:

p(x) ∝ exp(−x2/2)| sin(x)|

Example 2 (truncated normal):

p(x) ∝ exp(−x2/2)1{x>c}

What is M for each case? What can we say about efficiency?

17/25



Importance Sampling

Rather that accept/reject, assign weights to samples.

∫
X
g(x)p(x)dx =

∫
X
g(x)p(x)q(x)q(x)dx

Draw proposal x from q(·) and assign weight w(x) = p(x)/q(x).
Use approximation∫

X
g(x)p(x)dx ≈ 1

N

N∑
i=1

w(xi)g(x)

Since w(x) = p(x)/q(x) = f(x)
Zq(x) , we need normalizn constant Z

We don’t need a bounding envelope.
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Importance Sampling (contd)

When does this make sense?
Sometimes it’s easier to simulate from q(x) than p(x).

Sometimes it’s better to simulate from q(x) than p(x)!

To reduce variance. E.g. rare event simulation.
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Importance sampling:

Sample proposals x∗ ∼ q(·) and assign weights
w(x) = p(x)/q(x).

∫
f(x)p(x)dx ≈ 1

N

N∑
s=1

f(xs)w(xs)

Let X = (x1, . . . , x100) be a hundred dice.
What is p(

∑
xi ≥ 550)?

Rejection sampling (from p(x)) leads to high rejection.

A better choice might be to bias the dice.
E.g. q(xi = v) ∝ v (for v ∈ {1, . . . 6})
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Importance sampling:

Define SX =
∑
xi

p(S ≥ 550) =
∑

y∈ all configs of 100 dice
δ(
∑

y ≥ 550)p(y)

=
∑

y∈ all configs of 100 dice

p(y)
q(y)δ(

∑
y ≥ 550)q(y)

For a proposal X∗ ∼ q,

w(X∗) = p(X∗
q(X∗) =

(1/6)100∏
i q(x∗i )

Use approximation p(S ≥ 550) ≈
∑N

j=1 w(Xj)δ(
∑
xji ≥ 550)

21/25



Importance sampling (contd)

What is the variance of the estimate?

Var[µimp] = E[µ2imp]− µ2

= E

( 1
N

N∑
i=1

wig(xi)
)2− µ2

= E

[(
p(x)g(x)
q(x)

)2]
− µ2

=

∫
X
q(x)

(
p(x)g(x)
q(x)

)2
dx− µ2

≥
(∫

X
q(x)p(x)g(x)q(x) dx

)2
− µ2

= 0 (!)
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Importance sampling (contd)

We achieve this lower bound when q(x) ∝ p(x)g(x).
A slightly useless result, because

q(x) = p(x)g(x)∫
X p(x)g(x)dx

requires solving the integral we care about.
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Importance sampling (contd)

We want a small variance in the weights w(xi).
Easy to check at Eq[w(x)] = 1.

Varq[w(x)] = Eq[w(x)2]− Eq[w(x)]2

=

∫
X

(
p(x)
q(x)

)2
q(x)dx− 1 =

∫
X

p(x)2
q(x) dx− 1

Can be unbounded. E.g. p = N (0, 2) and q = N (0, 1).

A
popular diagnosis statistic: effective sample size (ESS).

ESS =

(∑N
i=1 w(xi)

)2
∑N

i=1 w(xi)2

Small ESS→ Large variability in w’s→ bad estimate.
Large ESS promises you nothing!
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Importance sampling when Z is unknown

Importance weights are w(x) = p(x)/q(x), where p(x) = f(x)/Z.

How can we estimate Z =
∫
f(x)dx?

Reuse samples from the proposal distribution q(x):

Ẑ =
1
N

N∑
i=1

f(xi)
q(xi)

=
1
N

N∑
i=1

w̃(xi)

Can use to approximate importance sampling weights w(xi):

w(xi) =
p(xi)
q(xi)

=
f(xi)
Zq(xi)

≈ 1
Ẑ
w̃(xi)

Use w̃(x) instead of w(x) in the Monte Carlo approximation.
Is biased for finite N, but consistent as N→ ∞.
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