
lecture 11: gradient descent and
conjugate priors
STAT 545: Intro. to Computational Statistics

Vinayak Rao
Purdue University

October 6, 2016

Global and local minimum

Find minimum of some function f : RD → R.
(maximization is just minimizing −f).

No global information (e.g. only function evaluations,
derivatives).

Global minimum

Local minimum

Finding a global minimum is hard!
Usually settle for finding a local minimum (like the EM
algorithm).

1/13

Global and local minimum

Find minimum of some function f : RD → R.
(maximization is just minimizing −f).

No global information (e.g. only function evaluations,
derivatives).

Global minimum

Local minimum

Finding a global minimum is hard!
Usually settle for finding a local minimum (like the EM
algorithm). 1/13

Steepest descent (iterative method)

Let xold be our current value.

Update xnew as xnew = xold − η df
dx

∣∣∣
xold

The steeper the slope, the bigger the move.

η: sometimes called the ‘learning rate’
(from neural network literature)

Choosing η is a dark art:

Better methods adapt step-size according to the curvature of f.

2/13

Steepest descent (iterative method)

Let xold be our current value.

Update xnew as xnew = xold − η df
dx

∣∣∣
xold

The steeper the slope, the bigger the move.

η: sometimes called the ‘learning rate’
(from neural network literature)

Choosing η is a dark art:

Better methods adapt step-size according to the curvature of f.

2/13

Steepest descent (iterative method)

Let xold be our current value.

Update xnew as xnew = xold − η df
dx

∣∣∣
xold

The steeper the slope, the bigger the move.

η: sometimes called the ‘learning rate’
(from neural network literature)

Choosing η is a dark art:

Better methods adapt step-size according to the curvature of f.

2/13

Steepest descent (iterative method)

Let xold be our current value.

Update xnew as xnew = xold − η df
dx

∣∣∣
xold

The steeper the slope, the bigger the move.

η: sometimes called the ‘learning rate’
(from neural network literature)

Choosing η is a dark art:

Better methods adapt step-size according to the curvature of f.
2/13

Steepest descent in higher-dimensions

Steepest descent also applies to higher dimensions too:

xnew = xold − η ∇f|xold

Now, even using the optimal η can be inefficient:

−5

0

5

10

15

−5 0 5 10 15

More on this later. 3/13

Estimating MLE

Consider a set of observations Y = (y1, · · · , yN).

Assume yi ∼ p(y|θ)

θMLE = argmax ℓ(θ) = argmax
N∑
i=1

logp(xi|θ)

The gradient of the log-likelihood is ∇ℓ(θ) =
∑N

i=1∇ logp(xi|θ)
The average of the gradients of each datapoint.

Starting with an initial θ0, iterate:

θi+1 = θi + η∇ℓ(θi)

Conceptually (deceptively?) simpler than EM.

4/13

Estimating MLE

Consider a set of observations Y = (y1, · · · , yN).

Assume yi ∼ p(y|θ)

θMLE = argmax ℓ(θ) = argmax
N∑
i=1

logp(xi|θ)

The gradient of the log-likelihood is ∇ℓ(θ) =
∑N

i=1∇ logp(xi|θ)
The average of the gradients of each datapoint.

Starting with an initial θ0, iterate:

θi+1 = θi + η∇ℓ(θi)

Conceptually (deceptively?) simpler than EM.

4/13

Estimating MLE

Consider a set of observations Y = (y1, · · · , yN).

Assume yi ∼ p(y|θ)

θMLE = argmax ℓ(θ) = argmax
N∑
i=1

logp(xi|θ)

The gradient of the log-likelihood is ∇ℓ(θ) =
∑N

i=1∇ logp(xi|θ)
The average of the gradients of each datapoint.

Starting with an initial θ0, iterate:

θi+1 = θi + η∇ℓ(θi)

Conceptually (deceptively?) simpler than EM.
4/13

Gradient descent (contd.)

∇ℓ(θ) =
N∑
i=1

∇ logp(xi|θ)

Cons:

• Calculating the gradient is O(N).
(Each iteration must cycle through all datapoints.)

• Lots of redundancy, esp. for large N.

Pros:

• Convergence is better understood.
• Accelerated methods are available (e.g. Newton’s method,
conjugate gradient)

5/13

Gradient descent (contd.)

∇ℓ(θ) =
N∑
i=1

∇ logp(xi|θ)

Cons:

• Calculating the gradient is O(N).
(Each iteration must cycle through all datapoints.)

• Lots of redundancy, esp. for large N.

Pros:

• Convergence is better understood.
• Accelerated methods are available (e.g. Newton’s method,
conjugate gradient)

5/13

Stochastic gradient descent

Use a noisy gradient ∇̂ℓ.

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches Bi:

∇̂ℓ(θ) =
∑
j∈Bi

∇ logp(xj|θ)

6/13

Stochastic gradient descent

Use a noisy gradient ∇̂ℓ.

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches Bi:

∇̂ℓ(θ) =
∑
j∈Bi

∇ logp(xj|θ)

Pros:
• Calculating the gradient is O(B).
(Often, each batch is just a single datapoint)

• Much faster convergence (just one sweep through the data
can get you a decent solution).

• Often, you get better solutions.
• Useful for online systems, tracking θ that varies over time .

6/13

Stochastic gradient descent

Use a noisy gradient ∇̂ℓ.

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches Bi:

∇̂ℓ(θ) =
∑
j∈Bi

∇ logp(xj|θ)

Cons:
• Convergence analysis is harder.
• Noisy gradients mean the algorithm will never converge.
Typically need to reduce the step size every iteration.
We want

ηi → 0,
∞∑
i=1

ηi = ∞

E.g. ηi = a
b+i

6/13

bayesian inference

Bayesian inference

Given a set of observations X, MLE maximizes the likelihood:

θMLE = argmax p(X|θ)

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a ‘prior’ probability p(θ).

Given observations, we can calculate the ‘posterior’:

p(θ|X) = p(X|θ)p(θ)
P(X)

We can calculate the maximum a posteriori (MAP) solution:

θMAP = argmax p(θ|X)

Point estimate discards information about uncertainty in θ

8/13

Bayesian inference

Given a set of observations X, MLE maximizes the likelihood:

θMLE = argmax p(X|θ)

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a ‘prior’ probability p(θ).

Given observations, we can calculate the ‘posterior’:

p(θ|X) = p(X|θ)p(θ)
P(X)

We can calculate the maximum a posteriori (MAP) solution:

θMAP = argmax p(θ|X)

Point estimate discards information about uncertainty in θ

8/13

Bayesian inference

Given a set of observations X, MLE maximizes the likelihood:

θMLE = argmax p(X|θ)

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a ‘prior’ probability p(θ).

Given observations, we can calculate the ‘posterior’:

p(θ|X) = p(X|θ)p(θ)
P(X)

We can calculate the maximum a posteriori (MAP) solution:

θMAP = argmax p(θ|X)

Point estimate discards information about uncertainty in θ

8/13

Bayesian inference

Given a set of observations X, MLE maximizes the likelihood:

θMLE = argmax p(X|θ)

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a ‘prior’ probability p(θ).

Given observations, we can calculate the ‘posterior’:

p(θ|X) = p(X|θ)p(θ)
P(X)

We can calculate the maximum a posteriori (MAP) solution:

θMAP = argmax p(θ|X)

Point estimate discards information about uncertainty in θ

8/13

Bayesian inference

Given a set of observations X, MLE maximizes the likelihood:

θMLE = argmax p(X|θ)

What if we believe θ is close to 0, is sparse, or is smooth?

Encode this with a ‘prior’ probability p(θ).

Given observations, we can calculate the ‘posterior’:

p(θ|X) = p(X|θ)p(θ)
P(X)

We can calculate the maximum a posteriori (MAP) solution:

θMAP = argmax p(θ|X)

Point estimate discards information about uncertainty in θ

8/13

Bayesian inference

Bayesian inference works with the entire distribution p(θ|X).

Allows us to maintain and propagate uncertainty.

In practice, these distributions are unwieldy.

Need approximations.

An exception: ‘Conjugate priors’.

9/13

Bayesian inference

Bayesian inference works with the entire distribution p(θ|X).

Allows us to maintain and propagate uncertainty.

In practice, these distributions are unwieldy.

Need approximations.

An exception: ‘Conjugate priors’.

9/13

Bayesian inference

Bayesian inference works with the entire distribution p(θ|X).

Allows us to maintain and propagate uncertainty.

In practice, these distributions are unwieldy.

Need approximations.

An exception: ‘Conjugate priors’.

9/13

Conjugate exponential family priors

Let observations come from an exponential-family:

p(x|θ) = 1
Z(θ)h(x) exp(θ

⊤ϕ(x))

= h(x) exp(θ⊤ϕ(x)− ζ(θ)) with ζ(θ) = log(Z(θ))

Place a prior over θ:

p(θ|a,b) ∝ η(θ) exp(θ⊤a− ζ(θ)b)

Given a set of observations X = {x1, . . . , xN}

p(θ|X) ∝
(N∏
i=1

h(xi) exp(θ⊤ϕ(xi)− ζ(θ))

)
η(θ) exp(θ⊤a− ζ(θ)b)

∝ η(θ) exp
(
θ⊤

(
a+

N∑
i=1

ϕ(xi)
)

− ζ(θ)(b+ N)
)

10/13

Conjugate exponential family priors

Let observations come from an exponential-family:

p(x|θ) = 1
Z(θ)h(x) exp(θ

⊤ϕ(x))

= h(x) exp(θ⊤ϕ(x)− ζ(θ)) with ζ(θ) = log(Z(θ))

Place a prior over θ:

p(θ|a,b) ∝ η(θ) exp(θ⊤a− ζ(θ)b)

Given a set of observations X = {x1, . . . , xN}

p(θ|X) ∝
(N∏
i=1

h(xi) exp(θ⊤ϕ(xi)− ζ(θ))

)
η(θ) exp(θ⊤a− ζ(θ)b)

∝ η(θ) exp
(
θ⊤

(
a+

N∑
i=1

ϕ(xi)
)

− ζ(θ)(b+ N)
)

10/13

Conjugate exponential family priors

Let observations come from an exponential-family:

p(x|θ) = 1
Z(θ)h(x) exp(θ

⊤ϕ(x))

= h(x) exp(θ⊤ϕ(x)− ζ(θ)) with ζ(θ) = log(Z(θ))

Place a prior over θ:

p(θ|a,b) ∝ η(θ) exp(θ⊤a− ζ(θ)b)

Given a set of observations X = {x1, . . . , xN}

p(θ|X) ∝
(N∏
i=1

h(xi) exp(θ⊤ϕ(xi)− ζ(θ))

)
η(θ) exp(θ⊤a− ζ(θ)b)

∝ η(θ) exp
(
θ⊤

(
a+

N∑
i=1

ϕ(xi)
)

− ζ(θ)(b+ N)
)

10/13

Conjugate exponential family priors

Let observations come from an exponential-family:

p(x|θ) = 1
Z(θ)h(x) exp(θ

⊤ϕ(x))

= h(x) exp(θ⊤ϕ(x)− ζ(θ)) with ζ(θ) = log(Z(θ))

Place a prior over θ:

p(θ|a,b) ∝ η(θ) exp(θ⊤a− ζ(θ)b)

Given a set of observations X = {x1, . . . , xN}

p(θ|X) ∝
(N∏
i=1

h(xi) exp(θ⊤ϕ(xi)− ζ(θ))

)
η(θ) exp(θ⊤a− ζ(θ)b)

∝ η(θ) exp
(
θ⊤

(
a+

N∑
i=1

ϕ(xi)
)

− ζ(θ)(b+ N)
)

10/13

Conjugate priors (contd.)

Prior over θ: exp. fam. distribution with parameters (a,b).

Posterior: same family with parameters (a+
∑N

i=1 ϕ(xi),b+ N).

Rare instance where analytical expressions for posterior exists.

In most cases a simple prior quickly leads to a complicated
posterior, requiring Monte Carlo methods.

11/13

Conjugate priors: Beta-Bernoulli example

Let x ∼ Bern(π), so that

p(x|π) = π1(x=1)(1− π)1(x=2)

= exp (1(x = 1) log(π) + (1− 1(x = 1)) log(1− π))

= (1− π) exp
(
1(x = 1) log π

1− π

)
=

1
1+ exp(θ) exp (ϕ(x)θ)

This is an exponential family distrib., with
θ = log π

1−π , ϕ(x) = 1(x = 1),h(x) = 1, Z(θ) = (1+ exp(θ)).
Defining ζ(θ) = log Z(θ) as in the previous slide,

p(x|θ) = exp (ϕ(x)θ − ζ(θ))

12/13

Conjugate priors: Beta-Bernoulli example

Let x ∼ Bern(π), so that

p(x|π) = π1(x=1)(1− π)1(x=2)

= exp (1(x = 1) log(π) + (1− 1(x = 1)) log(1− π))

= (1− π) exp
(
1(x = 1) log π

1− π

)
=

1
1+ exp(θ) exp (ϕ(x)θ)

This is an exponential family distrib., with
θ = log π

1−π , ϕ(x) = 1(x = 1),h(x) = 1, Z(θ) = (1+ exp(θ)).

Defining ζ(θ) = log Z(θ) as in the previous slide,

p(x|θ) = exp (ϕ(x)θ − ζ(θ))

12/13

Conjugate priors: Beta-Bernoulli example

Let x ∼ Bern(π), so that

p(x|π) = π1(x=1)(1− π)1(x=2)

= exp (1(x = 1) log(π) + (1− 1(x = 1)) log(1− π))

= (1− π) exp
(
1(x = 1) log π

1− π

)
=

1
1+ exp(θ) exp (ϕ(x)θ)

This is an exponential family distrib., with
θ = log π

1−π , ϕ(x) = 1(x = 1),h(x) = 1, Z(θ) = (1+ exp(θ)).
Defining ζ(θ) = log Z(θ) as in the previous slide,

p(x|θ) = exp (ϕ(x)θ − ζ(θ))

12/13

Conjugate priors: Beta-Bernoulli example

If the parameter θ (or equivalently π) is unknown, Bayesian
inference places a prior on it.

As before, define an exp. fam. prior with parameters a⃗:

p(θ|⃗a) ∝ exp(a1θ + a2ζ(θ))

Then given data X = (x1, . . . , xN),

p(θ|⃗a, X) ∝ p(θ, X|⃗a)

∝ exp
((

a1 +
N∑
i=1

1(xi = 1)
)
θ + (a2 − N)ζ(θ)

)

Thus, the posterior is in the same family as the prior, but with
updated parameters

(
a1 +

∑N
i=1 1(xi = 1),a2 − N

)
.

13/13

Conjugate priors: Beta-Bernoulli example

If the parameter θ (or equivalently π) is unknown, Bayesian
inference places a prior on it.

As before, define an exp. fam. prior with parameters a⃗:

p(θ|⃗a) ∝ exp(a1θ + a2ζ(θ))

Then given data X = (x1, . . . , xN),

p(θ|⃗a, X) ∝ p(θ, X|⃗a)

∝ exp
((

a1 +
N∑
i=1

1(xi = 1)
)
θ + (a2 − N)ζ(θ)

)

Thus, the posterior is in the same family as the prior, but with
updated parameters

(
a1 +

∑N
i=1 1(xi = 1),a2 − N

)
.

13/13

Conjugate priors: Beta-Bernoulli example

If the parameter θ (or equivalently π) is unknown, Bayesian
inference places a prior on it.

As before, define an exp. fam. prior with parameters a⃗:

p(θ|⃗a) ∝ exp(a1θ + a2ζ(θ))

Then given data X = (x1, . . . , xN),

p(θ|⃗a, X) ∝ p(θ, X|⃗a)

∝ exp
((

a1 +
N∑
i=1

1(xi = 1)
)
θ + (a2 − N)ζ(θ)

)

Thus, the posterior is in the same family as the prior, but with
updated parameters

(
a1 +

∑N
i=1 1(xi = 1),a2 − N

)
.

13/13

Conjugate priors: Beta-Bernoulli example

Looking at the prior more carefully, we see:

p(θ|⃗a) ∝ exp(a1θ + a2ζ(θ))

∝ exp
(
a1 log

π

1− π
+ a2 log(1− π)

)
∝ πa1(1− π)(a2−a1)

= πb1−1(1− π)(b2−1)

This is just the Beta(b1,b2) distribution, and you can check that
the posterior is Beta

(
b1 +

∑N
i=1 1(xi = 1),b2 +

∑N
i=1 1(xi = 2)

)
.

b1 and b2 are sometimes called pseudo-observations, and
capture our prior beliefs: before seeing any x’s our prior is as
if we saw b1 ones and b2 twos. After seeing data, we factor
actual observations into the pseudo-observations.

14/13

Conjugate priors: Beta-Bernoulli example

Looking at the prior more carefully, we see:

p(θ|⃗a) ∝ exp(a1θ + a2ζ(θ))

∝ exp
(
a1 log

π

1− π
+ a2 log(1− π)

)
∝ πa1(1− π)(a2−a1)

= πb1−1(1− π)(b2−1)

This is just the Beta(b1,b2) distribution, and you can check that
the posterior is Beta

(
b1 +

∑N
i=1 1(xi = 1),b2 +

∑N
i=1 1(xi = 2)

)
.

b1 and b2 are sometimes called pseudo-observations, and
capture our prior beliefs: before seeing any x’s our prior is as
if we saw b1 ones and b2 twos. After seeing data, we factor
actual observations into the pseudo-observations. 14/13

