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GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function evaluations,
derivatives).

Local minimum

Global minimum
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GLOBAL AND LOCAL MINIMUM

Find minimum of some function f: R? — R.
(maximization is just minimizing —f).

No global information (e.g. only function evaluations,
derivatives).

Local minimum

Global minimum

Finding a global minimum is hard!
Usually settle for finding a local minimum (like the EM

algorithm). e



STEEPEST DESCENT (ITERATIVE METHOD)
Let x,;g be our current value.

d
Update Xpew as Xnew = Xold — 1 d—){

Xold

The steeper the slope, the bigger the move.
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STEEPEST DESCENT (ITERATIVE METHOD)

Let x,;g be our current value.

d
Update Xpew as Xnew = Xold — 1 dT):

Xold

The steeper the slope, the bigger the move.

7. sometimes called the ‘learning rate’
(from neural network literature)

Choosing n is a dark art:

f(=) f(z)

Better methods adapt step-size according to the curvature of f. e



STEEPEST DESCENT IN HIGHER-DIMENSIONS

Steepest descent also applies to higher dimensions too:
Xnew = Xold — 1 Vfly_,

Now, even using the optimal n can be inefficient:

=

More on this later. 313



ESTIMATING MLE
Consider a set of observations Y = (y1,- -+ ,yn).
Assume y; ~ p(y|6)

N
Ouie = argmax £(0) = argmax » _ log p(x;|6)
=
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ESTIMATING MLE
Consider a set of observations Y = (y1,- -+ ,yn).
Assume y; ~ p(y|6)

N
Ouie = argmax £(0) = argmax » _ log p(x;|6)
=

The gradient of the log-likelihood is V£(6) = -, V log p(x;|0)
The average of the gradients of each datapoint.

Starting with an initial 6y, iterate:
Oiy1 = 0; +nVE(6))

Conceptually (deceptively?) simpler than EM. "
4



GRADIENT DESCENT (CONTD.)

N
VU(0) =) Vlogp(x|0)

i=1
Cons:

- Calculating the gradient is O(N).
(Each iteration must cycle through all datapoints.)

- Lots of redundancy, esp. for large N.

513



GRADIENT DESCENT (CONTD.)

VU(0) =) Vlogp(x|0)

Cons:
- Calculating the gradient is O(N).

(Each iteration must cycle through all datapoints.)
- Lots of redundancy, esp. for large N.

Pros:

- Convergence is better understood.
- Accelerated methods are available (e.g. Newton's method,
conjugate gradient )

513



STOCHASTIC GRADIENT DESCENT
Use a noisy gradient Ve,

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches B;:

Vi) =" Vlogp(x0)

JEB;
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STOCHASTIC GRADIENT DESCENT
Use a noisy gradient Ve,

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches B;:
Vi(©) = Vlogp(x[0)
JEB;
Pros:

- Calculating the gradient is O(B).
(Often, each batch is just a single datapoint)

- Much faster convergence (just one sweep through the data
can get you a decent solution).

- Often, you get better solutions.

- Useful for online systems, tracking 6 that varies over time .
6/13



STOCHASTIC GRADIENT DESCENT
Use a noisy gradient Ve,

Typically split data into N/B batches of size B.
Each iteration, calculate gradient on one of the batches B;:

Vi(©) = Vlogp(x[0)
JEB;
Cons:
- Convergence analysis is harder.
- Noisy gradients mean the algorithm will never converge.
Typically need to reduce the step size every iteration.
We want

o
n—0, Y n=00
i=1

Eg ni = 555 6/13
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Given a set of observations X, MLE maximizes the likelihood:

Ome = argmax p(X|0)
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p(op) = P
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BAYESIAN INFERENCE

Given a set of observations X, MLE maximizes the likelihood:
Oue = argmax p(X|6)
What if we believe 6 is close to 0, is sparse, or is smooth?

Encode this with a ‘prior’ probability p(6).

Given observations, we can calculate the ‘posterior”

_ p(X|6)p(0)
We can calculate the maximum a posteriori (MAP) solution:
Ouap = argmax p(6|X)

Point estimate discards information about uncertainty in
8/13



BAYESIAN INFERENCE

Bayesian inference works with the entire distribution p(8|X).

Allows us to maintain and propagate uncertainty.
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BAYESIAN INFERENCE

Bayesian inference works with the entire distribution p(8|X).
Allows us to maintain and propagate uncertainty.

In practice, these distributions are unwieldy.

Need approximations.

An exception: ‘Conjugate priors’.

943



CONJUGATE EXPONENTIAL FAMILY PRIORS
Let observations come from an exponential-family:
1
p(x|6) = Ze=h(x) exp(87 9(x))

@
= h(x)exp(8 " ¢(x) — ¢(8)) with ¢(0) = log(Z(0))

Place a prior over #6:
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CONJUGATE EXPONENTIAL FAMILY PRIORS

Let observations come from an exponential-family:

p(x0) = deh(x) exp(67 ()

)
= h(x)exp(8 " ¢(x) — ¢(8)) with ¢(0) = log(Z(0))

Place a prior over #6:

p(bla, b) () exp(¢ " a — ¢(0)b)

10/13



CONJUGATE EXPONENTIAL FAMILY PRIORS

Let observations come from an exponential-family:

P10) = 555h() xp(67 (1)

= h(x) exp(8" ¢(x) — ¢(6)) with ¢(6) = log(Z(6))
Place a prior over #6:

p(bla, b) () exp(¢ " a — ¢(0)b)

Given a set of observations X = {x1,...,xy}

p(O1X) o (Hh )exp(8 " o(x;) — C(9))> n(6) exp(d'a —

¢(6)b)
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CONJUGATE EXPONENTIAL FAMILY PRIORS

Let observations come from an exponential-family:

P10) = 555h() xp(67 (1)

= h(x) exp(8" ¢(x) — ¢(6)) with ¢(6) = log(Z(6))
Place a prior over #6:

p(bla, b) () exp(¢ " a — ¢(0)b)

Given a set of observations X = {x1,...,xy}

p(O1X) o (Hh )exp(8 " o(x;) — 6(9))> n(6) exp(8" a — ¢(6)b)

x 1(h) exp< <a+2¢ ) b+N)>

10/13



CONJUGATE PRIORS (CONTD.)

Prior over 6: exp. fam. distribution with parameters (a, b).
Posterior: same family with parameters (a + ZL #(xi), b+ N).
Rare instance where analytical expressions for posterior exists.

In most cases a simple prior quickly leads to a complicated
posterior, requiring Monte Carlo methods.

1113



CONJUGATE PRIORS: BETA-BERNOULLI EXAMPLE

Let x ~ Bern(n), so that

p(x|r) = at6=N(1 = 7)L06=2)
= exp (L(x = 1) log(n) + (1 — 1(x = 1)) log(1 — 7))
=(1—m)exp (Il(x = 1) log &)

= W exp (o(x)0)

1243
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CONJUGATE PRIORS: BETA-BERNOULLI EXAMPLE

Let x ~ Bern(n), so that
plxjm) = w10 (1 — )12
=exp (1(x =1)log(m) + (1 — 1(x = 1)) log(1 — 7))
= (1—7)exp (Il(x = 1)log 1;)

= W exp (o(x)0)

This is an exponential family distrib., with
6 = log =, #(x) = L(x = 1), h(x) =1,2(8) = (1+ exp(h)).
Defining ¢(#) = logZ(#) as in the previous slide,

p(x|60) = exp (#(x)0 — ((8))

1243



CONJUGATE PRIORS: BETA-BERNOULLI EXAMPLE

If the parameter 6 (or equivalently ) is unknown, Bayesian
inference places a prior on it.

As before, define an exp. fam. prior with parameters a:

p(6]d) o< exp(a:f + ax{(6))
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CONJUGATE PRIORS: BETA-BERNOULLI EXAMPLE

If the parameter 6 (or equivalently ) is unknown, Bayesian
inference places a prior on it.

As before, define an exp. fam. prior with parameters a:
p(0]a) oc exp(ad + ax((9))
Then given data X = (xq,...,Xy),

p(6]d, X) o p(6,X|d)

N
x exp ((ch + Z 1(x; = 1)) 0+ (a; — N)C(G))
=1

Thus, the posterior is in the same family as the prior, but with
updated parameters <01 - Z,’L 1(x;=1),a; — N).

1343



CONJUGATE PRIORS: BETA-BERNOULLI EXAMPLE

Looking at the prior more carefully, we see:
p(6]) o< exp(ard + ax¢(6))
o exp (01 log % + ay log(1 — 7r))
— T

oc 7911 — )@= %)
— 7_(_bw—‘l(»l _ ﬂ_)(bz—T)

This is just the Beta(b, by) distribution, and you can check that
the posterior is Beta <b1 + 3N 1 =1),b04+ 2N 1(x = 2)).
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CONJUGATE PRIORS: BETA-BERNOULLI EXAMPLE

Looking at the prior more carefully, we see:

p(6]d) o< exp(ai6 + ax¢(6))

x exp <a1 log & + ay log(1 — 7r)>

o (1 — 77)(02_01)
— 7_(_bw—‘l(»l _ 7I_)(bz—T)

This is just the Beta(b, by) distribution, and you can check that
the posterior is Beta <b1 + 3N 1 =1),b04+ 2N 1(x = 2)).

by and b, are sometimes called pseudo-observations, and
capture our prior beliefs: before seeing any x's our prior is as
if we saw by ones and b, twos. After seeing data, we factor

actual observations into the pseudo-observations. 143



