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EXPONENTIAL FAMILY MODELS

Consider a space X. Eg R,R? or N.

o(X) = [¢1(x),...,ép(X)] : (feature) vector of sufficient statistics
0 =1[0,...,0p]: vector of natural parameters
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EXPONENTIAL FAMILY MODELS

Consider a space X. Eg R,R? or N.

o(X) = [¢1(x),...,ép(X)] : (feature) vector of sufficient statistics
0 =1[0,...,0p]: vector of natural parameters

Exponential family distribution:

p(x6) = de)h(x) exp(8” ()

h(x) is the base-measure or base distribution.

Z(0) = [ h(x) exp(8" ¢(x))dx is the normalization constant.
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EXAMPLES

The normal distribution:

1 1
p(x|p, %) = Nz exp <_M(X - M)2>

2
exp (—22
— M exp (—1X2 - M2X>
g

V2mo? 20?
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EXAMPLES

The normal distribution:

1 1
p(X|p, 0°) = Nz exp <_M(X - M)2>

2
exp (—22
— M exp (—1X2 - M2X>
g

V2mo? 20?

The Poisson distribution:

Xexp(—=A)
x!

= exp(~A).; exp(log(A))

pPXIA) =
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MINIMAL EXPONENTIAL FAMILY

Sufficient statistics are linearly independent

Consider a K-component discrete distribution @ = (m, ...

K K

p(X) = [T 72" = exp(>_ 6(x = ¢) log c)

c=1 c=1

77TK)
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MINIMAL EXPONENTIAL FAMILY

Sufficient statistics are linearly independent

Consider a K-component discrete distribution @ = (m, ...

K K
p(X) = [[ 7Y = exp(>_ 6(X = ¢) logmc)
c=1 c=1
Is it minimal?
K—1
p(X) = mcexp(D> _ 6(X = ) logme/m)
c=1
K—1
= exp(; §(X = c)fc)

3120



MAXIMUM-LIKELIHOOD ESTIMATION

Given N i.i.d. observations X = {xy, ..., xy}, the likelihood is

£(16) = I 7510 06766

1 N
= <Z(9 ) (Hh X; ) exp(6 ;Qb(xi))
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MAXIMUM-LIKELIHOOD ESTIMATION

Given N i.i.d. observations X = {xy, ..., xy}, the likelihood is

£(16) = I 7510 06766

< ) (Hh X,>exp I_Zijqb(xf))

The log-likelihood £(X|0) = log L(X|0) is

(X|@) =0T (qu Xj )) — NlogZ(6) + > logh(x;)
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MAXIMUM-LIKELIHOOD ESTIMATION

Given N i.i.d. observations X = {xy, ..., xy}, the likelihood is
A
L(X|6) = H ﬁh(x,-) exp(07 ()

< ) (Hh X,>exp I_Zijqb(xf))

The log-likelihood £(X|0) = log L(X|0) is

N

(X|@) =0T (qu X; )) — NlogZ(6) + > logh(x;)

=1

To calculate a maximum likelihood estimate, we only need the
sum of the suff. statistics.
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N N
OECH (Z ¢(x,~)> — NlogZ(6) + > logh(x))
i=1

=1
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MLE FOR EXPONENTIAL FAMILIES

(X|@) =0T <Z¢ X; )) — NlogZ(6) + > logh(x;)

At MLE of g,, the dth component of 6: 254419 — o
d
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MLE FOR EXPONENTIAL FAMILIES

N

0(X|6) = 9T(Z¢ ) NlogZ(6) + > _logh(x)

=1

At MLE of 8,4, the dth component of : az(xw) =0.

Z Balx) = NSO

R4C)
Zd’f’ ~72(6) 06y

T
[ 220 0

:/1h(x)exp(9T¢(X))¢d(X)dX

2(9)
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MLE FOR EXPONENTIAL FAMILIES

Match empirical and population averages of ¢(x):

N
> Bal0) = Eaue[60(x)
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MLE FOR EXPONENTIAL FAMILIES
Match empirical and population averages of ¢(x):
1N
N Z d)d(xi) = EOMLE[¢d(X)]
=1
RHS: ‘moment parameters’ of the exponential distribution.

Thus: Oy are natural parameters corresponding to empirical
moment parameters (‘moment matching’).
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MLE FOR EXPONENTIAL FAMILIES

Match empirical and population averages of ¢(x):

N
1
N Z d’d(xi) = EOMLE[¢d(X)]
=1
RHS: ‘moment parameters’ of the exponential distribution.

Thus: Oy are natural parameters corresponding to empirical
moment parameters (‘moment matching’).

Is this @ maximum?
- is second derivative (Hessian) negative (negative definite)?

We can show #29/ log Z(X|@) = Cov(¢;, ¢;), and the Hessian of
£(X|0) is —N times the feature covariance matrix
6/20



EXAMPLE

The 1-d Gaussian: ¢ = [x x?]
Moment parameters are mean and mean squared
Easy to find corresponding natural parameters

Quite often, it is not the case.
However, we will restrict ourselves to cases where it is.
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MISSING DATA IN EXPONENTIAL FAMILY DISTRIBUTIONS

Let samples from the exponential family have two parts: [x y].

Feature vector ¢([x y]) := o(x,y).

P(x,y|6) := P([x ¥]|6) = h(x.y)

Z2(0)

exp(07 (x,))
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We observe only x. What is the posterior over y?
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MISSING DATA IN EXPONENTIAL FAMILY DISTRIBUTIONS

Let samples from the exponential family have two parts: [x y].

Feature vector ¢([x y]) := o(x,y).

e exp(6T o)

We observe only x. What is the posterior over y?

PYI.6) = S5 = gy PO 9)

An exponential family distrib. over y (remember x is fixed) with:

P(x,y10) := P([x y]|0) =

- feature vector ¢, (v) = ¢(X,y)
- base distribution hy(y) = h(x,y)

Not necessarily easy to work with, but will restrict to this case.

y; with different x; belong to different exp. fam. distrbs. 80



What about the marginal likelihood P(x|8) = [ P(x,y|0)dy?
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MLE WITH MISSING DATA

What about the marginal likelihood P(x|@) = [ P(x,y|6)dy?

- Not an exponential family distribution!
- Calculating derivatives is messy
- No nice closed form expression for MLE
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MLE WITH MISSING DATA

What about the marginal likelihood P(x|@) = [ P(x,y|6)dy?

- Not an exponential family distribution!
- Calculating derivatives is messy
- No nice closed form expression for MLE

One approach: the EM algorithm.
An algorithm for MLE in exp. fam. distribs. with missing data

Problem: Given observations Li.d. X = {x3,...,xy} from P(x|0)
where P(X, Y|0) is exponential family, maximize w.rt. @

N

((X|6) = log P(X|0) =) " log P(x;|6)
=i
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MLE IN LATENT VARIABLE MODELS

N N
((X|0) = logP(x|6) =) log / P(x;,;10)dy;
i=1 i=1
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MLE IN LATENT VARIABLE MODELS

N N
(X|0) = Z log P(xi|6) = Z log / P(x;,¥il0)dy,

_Zlog/q, Vi) q”i’ dy; (for arbitrary densities g;(v;))
/ I
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MLE IN LATENT VARIABLE MODELS
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MLE IN LATENT VARIABLE MODELS

N N
(X|0) = Z log P(xi|6) = Z log / P(x;,¥il0)dy,

_Zlog/q, Vi) q”i’ dy; (for arbitrary densities g;(v;))
I I

QI(yi)
N . N .
=Y [ togpeyiodyi - 3 [ aii)logaitvdy
j=1" j=1"

> Z/Qi(yi) log Mdy,— (Jensen's inequality)
i=1
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MLE IN LATENT VARIABLE MODELS

N N
(X|0) = Z log P(xi|6) = Z log / P(x;,¥il0)dy,

_Zlog/q, Vi) q”i’ dy; (for arbitrary densities g;(v;))
/ I

> Z/QI yi) log q"§'|) )dy,- (Jensen’s inequality)
l |

. N .
¥ [ aitv)togPx.vie)ay; — 3 [ ait)logavay,
j=1" j=1"
N N
P(yi|x;, 0
=3 [awtogpriony+ Y [ ai)ios "y
= — ai(vi)
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MLE IN LATENT VARIABLE MODELS

N N
(X|0) = Z log P(xi|6) = Z log / P(x;,¥il0)dy,

—Zlog/q, Vi) q”i’ dy; (for arbitrary densities g;(v;))
/ I

> Z/QI yi) log q"§'|) )dy,- (Jensen’s inequality)
l |

> N 5
= Z/Q/‘(y/') log P(x;, yi|@)dy; Z/ qi(vi) log g;(vi)dy;
i=1" i=1"
N N
P(yi|x;, 0
=3 [awtogpriony+ Y [ ai)ios "y
= — ai(vi)

N
=(X16) — D KL@i)IIP(ilX, 6))

P 10/20



JENSEN’S INEQUALITY

Let f(x) be a concave real-valued function defined on X.

f(fu)

pf(21) +§(1 —p)f(z2)

1 T =pr1+ (1 —p)zs T2

Concave: Non-positive 2nd-derivative (non-increasing deriv.)
A chord always lies below the function.
E.g. logarithm (defined on RT).
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JENSEN’S INEQUALITY

Let f(x) be a concave real-valued function defined on X.

f(fu)

f(x1)
pf(w1) +:(1 = p) f(2)

‘T'.l Te = pT1 + (1-p)z2 T2
Concave: Non-positive 2nd-derivative (non-increasing deriv.)
A chord always lies below the function.

E.g. logarithm (defined on RT).

Jensen: for any prob. vector p = (p1,...,px) and any set of
points (x,...,xk),  f(So1 pixe) = Yoiy pif(x)
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JENSEN’S INEQUALITY

Let f(x) be a concave real-valued function defined on X.

f(ze)

pf(21) +§(1 —p)f(z2)

1 T =pr1+ (1 —p)zs T2

Concave: Non-positive 2nd-derivative (non-increasing deriv.)
A chord always lies below the function.
E.g. logarithm (defined on RT).

Jensen: for any prob. vector p = (p1,...,px) and any set of
points (x,...,xk),  f(So1 pixe) = Yoiy pif(x)

In fact for a prob. density p(x). f( [ xp(x)dx) > [- f(x)p(x)dx 1720



MLE IN LATENT VARIABLE MODELS
Defining Q(Y) =TT (%)),

N > N
6X6) 2 > [ ai(v) log Pl yil6)dy; + Y- H(a)

N N
= Z]Eq,[log P(x;,vi|0)] + Z H(q;)
=1 i=1

N
((X18) = > KL(a;(y)IP(yilX, 8))

=1

= Fx(0,Q())
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MLE IN LATENT VARIABLE MODELS
Defining Q(Y) =TT (%)),

N > N
616) 2 3 [ i) g Pl 1IN + Y- H(a)
)EW i 1=1
= Zqu[log P(X/':yi‘e)] + Z H(Qr)

((X|6) — ZKL (@i(y)IIP(yilX, 6))

i=1
= Fx(0,Q(-))

Fx(6,Q(+)) is a lower bound to the log-likelihood ¢(X|6).
Sometimes called ‘variational free energy’ and
is function of @ and the ‘variational distribution” Q(Y) (X is fixed).
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OPTIMIZING THE VARIATIONAL LOWER BOUND

Our original goal was to maximize the log-likelihood:
Omie = argmax £(X|6)
EM algorithm: maximize the lower-bound instead
(6*,Q*) = argmax Fx(0,Q(+))

Hopefully easier, since all summations are outside logarithms.

Strategy: Coordinate ascent.

Alternately maximize w.rt Q and 6

First find best lower-bound given the current 6s.
Optimize this lower-bound to find 1.

13/20



THE EM ALGORITHM

Maximizing Fx(0, Q) with @ fixed:

- Recall Fx(6, Q) = £(X|0) — I, KL(q;(v)|IP(vilxi, 6))
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THE EM ALGORITHM

Maximizing Fx(0, Q) with @ fixed:

-+ Recall (6, Q) = ((X0) — Y1y KL(@i(v)IP(yilx;, 8))

- Solution: set g;(y;) = P(yi|xi, 0) for i=1,...,N

- Recall: P(:|xj,0) is an exponential family distribution with
natural parameters @ and feature vector ¢(x;, -)

14/20



THE EM ALGORITHM

Maximizing Fx(6, Q) with Q fixed:

N N
Fx(6,Q) = > Eq[logP(x;,yil0)] + > H(q))
=1 =il

The entropy terms H(g;) don’t depend on 6. Ignore.

15/20



THE EM ALGORITHM

Maximizing Fx(6, Q) with Q fixed:

N N
Fx(6,Q) = > Eq[logP(x;,yil0)] + > H(q))
=1 =il

The entropy terms H(g;) don’t depend on 6. Ignore.

log P(x;, yi10) = 0T ¢(x;,y;) + log h(x;) — logZ(6)
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THE EM ALGORITHM

Maximizing Fx(6, Q) with Q fixed:

N N
Fx(6,Q) = > Eq[logP(x;,yil0)] + > H(q))
=1 =1
The entropy terms H(g;) don’t depend on 6. Ignore.
log P(x;,yil8) = 6T ¢(x;,v;) + logh(x) — logZ(e)

N
Fx(0,Q) = Z 0" Eq [o(x;,y:)] — NlogZ(8) + const

i=1

15/20



THE EXPECTATION-MAXIMIZATION ALGORITHM

N
Fx(6,Q) = 07> Eqo(x;,y;)] — NlogZ(6) + const

=1
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THE EXPECTATION-MAXIMIZATION ALGORITHM

N
Fx(6,Q) = 07> Eqo(x;,y;)] — NlogZ(6) + const

=1

Compare with the fully observed log-likelihood:

(x0)=6" <Z¢ X; > — NlogZ(8) + const
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THE EXPECTATION-MAXIMIZATION ALGORITHM

N
Fx(6,Q) = 07> Eqo(x;,y;)] — NlogZ(6) + const

=1

Compare with the fully observed log-likelihood:

(x0)=6" <Z¢ Xi ) — NlogZ(8) + const

To maximize Fx w.r.t. 4, solve 6—%}}(0, Q) =0

- Solution: set 8* to match moments

Eg-[¢a(%, V)] = § Xivq Eq,[@a (X, vi)]
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THE EXPECTATION-MAXIMIZATION ALGORITHM

N
Fx(6,Q) = 07> Eqo(x;,y;)] — NlogZ(6) + const

=1

Compare with the fully observed log-likelihood:

(x0)=6" <Z¢ Xi ) — NlogZ(8) + const

To maximize Fx wW.rt. 84, solve 6—%}}(0, Q) =0:
- Solution: set #* to match moments
Eo- [$a(6,Y)] = § ZILs B [da(x;, ¥i)]
qi(y;) = P(vi|X,08°), an exponential family distribution whose

moment parameters can be calculated (by assumption).
16/20



N )
Current parameters: 6%, Q°(Y) = [T\L, ¢3(v;)
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STEP S OF THE EM ALGORITHM

Current parameters: 6°,Q5(Y) = ]_[,-N:1 a(vi)
E-step:
Fori=1,...,N:
- Set g7t (vi) = P(yilX, 6°).
Exp. fam. distrib. with suff. stats ¢(x;, -), natural params 6°
- Calculate E s [o(x;, ;)] (Expectation)
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STEP S OF THE EM ALGORITHM

Current parameters: 6°,Q5(Y) = ]_[,-N:1 a(vi)
E-step:
Fori=1,...,N:

- Set g7t (vi) = P(yilX, 6°).
Exp. fam. distrib. with suff. stats ¢(x;, -), natural params 6°
- Calculate E s [o(x;, ;)] (Expectation)

M-step  (Maximization):

+ Set 051" s0 that Egen [$(%, Y)] = § T Egs [60%, )] -

1720



EM ALGORITHM NEVER DECREASES LOG-LIKELIHOOD

Recall F(6°~',@°") = £(X|6°~") — KL(Q(V)[[P(Y[X, 6°")).
After the E-step, Q°(Y) = P(Y|X,6° )

0(x16°7") = (6571, Q%)
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After the E-step, Q°(Y) = P(Y|X,6° )

0(x16°7") = (6571, Q%)
< Fx(6°, Q)
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EM ALGORITHM NEVER DECREASES LOG-LIKELIHOOD
Recall Fx(0°~", Q") = £(X|6°~") — KL(Q(Y)||P(Y|X, 6°~ ).
After the E-step, Q5(Y) = P(Y|X,6°7"))

(X16°7") = Fx(6°7', Q%)
< fX(st QS)
S FX(057 QS+'|)

1820



EM ALGORITHM NEVER DECREASES LOG-LIKELIHOOD

Recall F(6°", Q") = (X|6°™") — KL(QUY)[IP(Y}x. 6°7")).
After the E-step, Q°(Y) = P(Y|X,6° )

(X|6°7") = Fx(6°71, Q%)
]:X(gsv QS)
FX(057 QS+'|)

((X|6°)

IN A
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EM ALGORITHM NEVER DECREASES LOG-LIKELIHOOD

Recall F(6°", Q") = (X|6°™") — KL(QUY)[IP(Y}x. 6°7")).
After the E-step, Q°(Y) = P(Y|X,6° )

(X165 = Fx(6°71, Q%)
J—_'X(OS7 QS)
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Same applies for partial E and M-steps.
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INIA

Same applies for partial E and M-steps.
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INIA

Same applies for partial E and M-steps.

Partial M-step: Update @ to increase (rather than maximize) Fx
Partial E-step: Update Q to decrease KL(Q(Y)||P(Y|X, @) (rather
reduce to 0). E.g. update just one or a few g;.
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EM ALGORITHM NEVER DECREASES LOG-LIKELIHOOD

Recall F(6°", Q") = (X|6°™") — KL(QUY)[IP(Y}x. 6°7")).
After the E-step, Q°(Y) = P(Y|X,6° )

(X165 = Fx(6°71, Q%)
J—_'X(GS7 QS)
FX(OS, QS+'|)

((X|6°)

INIA

Same applies for partial E and M-steps.

Partial M-step: Update @ to increase (rather than maximize) Fx
Partial E-step: Update Q to decrease KL(Q(Y)||P(Y|X, @) (rather
reduce to 0). E.g. update just one or a few g;.

Can also show that local maxima of Fx are local maxima of £.

1820



A TOY EXAMPLE:

A mixture of two Gaussians, N(x|m,1) and N (x|5 — m, 2).
First has probability 0.6, the second 0.4.
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What is the ML estimate of m?
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A TOY EXAMPLE:

A mixture of two Gaussians, N(x|m,1) and N (x|5 — m, 2).
First has probability 0.6, the second 0.4.

We observe a single data point x = 1.
What is the ML estimate of m?

What is the hidden variable?

Is the overall model exponential family?

What is the posterior distribution over the hidden variable?
If we knew the hidden variable, what is the MLE?

1920



THE EM ALGORITHM
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Initialize m = 2.9.
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THE EM ALGORITHM
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THE EM ALGORITHM

Initialize m = 2.9.

Set g = 0.37.

Setm = 1.88.

Set g = 0.775.

Set m = 1.265.
N Repeat till convergence
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