
Stats 545: Homework 6

Due before class on Nov 6.
All plots should have labelled axes and titles.

Important:Rcode, tables and figures should be part of a single .pdf or .html files from R

Markdown and knitr. See the class reading lists for a short tutorial.Any derivations can also be
in Markdown, in Latex or neatly written on paper which you can give to me.

1 Problem 1: Exploring the space of permutations with Metropolis-
Hastings [100]

The file message.txt on the course webpage gives a paragraph of English encoded by a permutation code,
where every symbol is mapped to a (usually) different one. The encryption key σ might thus be:

a → v

b → l

c → n

d → .

· · ·

and a message like “beware of dog.” might read as “lgavfgp wp. c”. To make life simple, assume there
are only 30 unique symbols, Symbol = (‘a’, ‘b’,. . . ,‘z’, ‘.’, ‘,’, ‘ ’ and ‘:’). Thus the encription is a bijective
function σ : Symbol → Symbol. Your job is to recover the original message (or equivalently find σ).

1. How many possible functions σ are there? [5 pts]

Clearly, brute force search is impossible. Instead, we will fit and use a model of the English language.
Download a large corpus of English (I used ‘War and Peace’ from Project Gutenberg). Use your favourite

text-editor to covert all text to lowercase. You might also want to delete some of the clutter at the beginning
and end of the file.

2. Read the file into R using the readChar() command. This will return a long string, split it up into
a list of characters using the strsplit() command. The table() command will then give you the
frequency of each unique character. This text contains more characters than we are interested in (we
only care about Symbol). Extract the appropriate symbols from the table, and calculate and plot a
histogram of the frequency of each character in Symbol. What is the entropy of this distribution?
(This is a very crude estimate of the entropy of the English language, if you’re interested, see http:

//www.math.ucsd.edu/~crypto/java/ENTROPY/ for how Shannon got a better (model-free) estimate
using human subjects ) [10 pts]

We will actually model English text as a first-order Markov process, characterized by a 30×30 transition
matrix T . We will write this as PEng(·|T ) (assume the distribution of the first symbol is uniform).

3. Given some data D, what are its sufficient statistics? These don’t have to be minimal. What is the
joint probability? What is the maximum likelihood estimate of T give D? [10 pts]
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4. Now estimate T for the English text you downloaded. The simplest way to do this is by under-
standing what table() with two arguments does and then running table(txt[1:length txt-1],

txt[2:length txt]). Plot the estimated T using a heatmap. For which symbols does the distribution
of the following symbol have the largest and smallest entropy? [10 pts]

We can now write a Bayesian model to estimate the permutation σ. We place a uniform prior over σ:

p(σ) ∝ 1

Given a message X encoded with σ, we expect σ−1(X) to be English text. We can evaluate the probability
it is English using our Markov model of English:

p(X|σ) = PEng(σ
−1(X)|T )

5. Write a function for this likelihood. It should take a transition matrix T, a message X (or the suffi-
cient statistics of X) and a permutation perm, and calculate the log-probability. (I implemented the
permutation as a named-list, so that e.g. perm[‘a’] gives ‘v’). [10 pts]

We are interested in the posterior p(σ|X) ∝ p(X|σ)p(σ).

6. Explain briefly why directly sampling from this is not easy. [2 pts]

Instead, we will use a simple Metropolis-Hastings algorithm. Start with an arbitrary permutation (I used
the identity map). Randomly pick two symbols and propose a new permutation that swaps these values of
the previous permutation

7. Write down the proposal distribution and the acceptance probability? [5 pts]

8. Finally implement this MH algorithm and run it on message.txt. I recovered the (almost perfect)
answer after about 3000 iterations. Plot the evolution of the likelihood over your MCMC run. Also
print the first 20 characters of the decoded message every 100 iterations. It might help to start by
using your own encoded message where you know the true answer. Specify how many iterations your
ran it for and what your burn-in period was. [25 pts]

9. Under the posterior distribution, which of the observed symbols had the highest and lowest uncertainty
about their true value? Which ones did it seem to get wrong? [5 pts]

10. Consider an i.i.d. model of English text where we assume the next symbol is drawn from the solution
to part 2? Does this work? All you have to do is change the function from part 5. Again, plot the
decoded output every 100 iterations. [15 pts]

11. Comment on the usefulness and feasibility of using higher-order Markov models for decoding (where
the next symbol depends e.g. on the previous two or five symbols). [3 pts]

2 Problem 2 (bonus) : Gibbs sampling for a mixture of Poissons
[25]

In a hypothetical experiment, a neuron emits a burst of x spikes over a short interval in response a stimulus.
The neuroscientist models x as Poisson-distributed, with mean λ, where λ is the voltage input to the neuron
(in appropriate units). λ is unknown, but assumed constant throughout the experiment and the neuroscientist
measures a sequence of counts X = (x1, x2, . . . , xN ).

1. What is the maximum likelihood estimate of λ? [2 pts]
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Now, even though λ for this neuron is unknown, the neuroscientist knows that across all neurons in the
brain, λ has mean 10 and standard-deviation 5. She decides to place a conjugate Gamma(a, b) prior on λ.

2. What are the parameters (a, b) of this conjugate prior? [2 pts]

3. What are the parameters of the posterior given observations X? [2 pts]

4. What is the MAP solution (corresponding to the mode of the posterior)? Wikipedia has an expression
for this. [2 pts]

Now assume that the electrode picks up signal not just from one but K neurons. Assume K = 5. Let λk

be the mean of neuron k (these are assumed independent). Each count xi now belongs to one of the 5 neurons,
let ci be its cluster assignment. Let all neurons have the sample probability i.e. p(ci = k) = 1/5 = πk. The
overall model is then:

λk ∼ Gamma(a, b), k = 1, . . . , 5

ci ∼ π i = 1, . . . , N

xi ∼ Poisson(λci)

We observe only the xi’s with the ci’s missing. The EM-algorithm would allow us to calculate point estimates
of λ⃗ (the MLE or even the MAP solution). However, we now want the full posterior distribution over λ⃗

given X. We will sample from p(C, λ⃗|X) using a Gibbs sampler that alternately samples the C given λ⃗,X

and then λ⃗|C,X.

5. For any observation i, write down P (ci|X, λ⃗, C¬i). [5 pts]

6. For neuron k, write down P (λk|X, λ⃗¬k, C). [5 pts]

7. Write a few lines of psuedocode describing your overall Gibbs sampler. [5 pts]

8. How would you use these samples to approximate the posterior mean and variance? [2 pts]

3


	Problem 1: Exploring the space of permutations with Metropolis-Hastings [100]
	Problem 2 (optional) : Gibbs sampling for a mixture of Poissons [25]

