
Stats 545: Homework 4

Due before midnight on Oct 16.
All plots should have labelled axes and titles.

Important:Rcode, tables and figures should be part of a single .pdf or .html files from R
Markdown and knitr. See the class reading lists for a short tutorial.Any derivations can also be
in Markdown, in Latex or neatly written on paper which you can give to me.

1 Problem 1: Exponential family distributions [40]

1. Consider a random variable x that can take D values and that is distributed according to the discrete
distribution with parameters ~π. We will write this as p(x|~π), with p(x = c|~π) = πc for c ∈ {1, . . . , D}.

(a) Write p(x|~π) as an exponential family distribution and give the natural parameters ~η as a function
of π (note this means you can also write π as a function of η though you don’t have to). Also
write a minimal feature vector φ (note πD = 1−

∑D−1
i=1 πi). [2 pts]

(b) Write E[φ(x)], the expectation of the feature vector φ as a function of the natural parameters ~η.
Recall that given some data X = (x1, . . . , xN ), maximum likelihood estimation (MLE) of η (and
thus π) is moment matching (i.e. calculating the empirical average of φ and setting η so that the
population average and the empirical averages match). [3 pts]

(c) What is the form of the conjugate prior on the parameters of p(x|π)? You only need to write it
upto a multiplicative constant (i.e. you don’t have to write the normalization constant). What is
its feature vector? [3 pts]

(d) If you call the natural parameters of this distribution ~a = (a1, . . .) (part (c) will give the dimen-
sionality of ~a), what are the parameters of the posterior distribution given a set of observations
X = (x1, . . . , xN )? (The point here is that in general the posterior distribution can be very com-
plicated, even for simple priors (so that we need methods like MCMC). However for conjugate
priors, the posterior lies in the same family as the prior, it just has different parameters) [2 pts]

2. Let x be Poisson distributed with mean λ. Repeat parts (a), (b), (c) and (d). [10 pts]

3. Let x be a 1-dimensional Gaussian with mean µ and variance σ2. Repeat parts (a), (b), (c) and (d).
(Note: both µ and σ2 are parameters). [10 pts]

4. Let x follow a geometric distribution with success probability p: (Pr(X = k) = (1 − p)kp for k =
0, 1, 2, . . .). Repeat parts (a), (b), (c) and (d). [10 pts]

2 Problem 2: EM for mixture of Bernoulli vectors [60]

1. We looked at the MNIST dataset last assignment. Write code to create a new dataset of only twos
and threes using the information in labels. Each pixel can take values from 1 to 256: now threshold
the images to be binary (0 or 1). Use a threshold between 1 to 5 (whatever you think is best). Do not
use a for loop. [3]
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We will model these binary images as a mixture of K Bernoulli vectors. Thus, we have K clusters, each
of which is parametrized by a 784-dimensional vector with each component lying between 0 and 1. Call the
kth cluster parameter µk, with µk ∈ [0, 1]784. The probability over clusters is a k-component probability
vector π. Thus, to generate an observation, we first sample a cluster c from π, and then generate a random
binary image x by setting the ith pixel to 1 with probability µk

i for i from 1 to 784.

2. Given N observations X = (x1, . . . , xN ) and their cluster assignments C = (c1, . . . , cN ), write down
the log joint-probability log p(X,C|π, ~µ). [4]

3. If we observed both X and C, what are the maximum likelihood estimates of π and the µks? [4]

4. Explain why p(C|X,π, ~µ) =
∏N

i=1 p(ci|xi, π, ~µ). Write down p(ci|xi, π, ~µ). This is the q of the EM
algorithm. [5]

5. Write down the variational lower bound F(q, π, ~µ) for the EM algorithm. Use the first expression in
the slides involving the entropy H(q). [4]

6. For a given q, what are the π and ~µ that maximize this? These expressions should be a simple relaxation
of part (3). [5]

7. Write an EM algorithm that maximizes F by alternately maximizing w.r.t. q (step 4) and (π, ~µ) (step
6). Although the algorithm doesn’t require you to evaluate F , your code should do this after each
update. This is a useful diagnostic for debugging since F should never decrease. Your stopping criteria
should be when the value of F stabilizes. [15]

8. Run the EM algorithm on the binary digits data set for K = 2 and 3. Plot the cluster parameters
using show digit. Also plot the trace of the evolution of F . Write down the final value of π and F .
What are the units of the latter? [15]

9. The entropy of a distribution is a measure of how ‘random’ it is. For K = 2, calculate the entropy of
the final q(ci|xi, ~µ, π) of each digit, and plot the digit with the largest entropy. This is the digit with
largest ambiguity about its correct cluster. [5]
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