
Stats 545: Homework 3

Due before midnight on Sunday, Oct 9.
All plots should have labelled axes and titles.

Important:Rcode, tables and figures should be part of a single .pdf or .html files from R

Markdown and knitr. See the class reading lists for a short tutorial.Any derivations can also be
in Markdown, in Latex or neatly written on paper which you can give to me.

1 Problem 1: The K-means algorithm. [55 pts]

The MNIST dataset is a dataset of 28 × 28 images of hand-written digits. Download it from http://

yann.lecun.com/exdb/mnist/ (you only really need the training images and labels though). To read these
images in R, use the script from https://gist.github.com/brendano/39760. Make sure you understand
this. Note that the show digit command displays a particular digit.

1. Since the dataset is quite large, restrict yourself to the first 1000 training images, and their labels.
Store these as variables called digits and labels. digits should be a 1000 × 784 matrix (or its
transpose). Include R code. [5 pts]

2. Write a function my kmeans to perform a k-means clustering of the 1000 images of digits. Use
Euclidean distance as your distance measure between images (which can be viewed as vectors in a 784
dimensional space). Your function should take 3 arguments, the matrix digits, the number of clusters
K and the number of initializations N . You code should consist of 3 nested loops. The outermost (from
1 to N) cycles over random cluster initializations (i.e. you will call k-means N times with different
initializations). The second loop (this could be a for or while loop) is the actual k-means algorithm
for that initialization, and cycles over the iterations of k-means. Inside this are the actual iterations
of k-means. Each iteration can have 2 successive loops from 1 to K: the first assigns observations to
each cluster and the second recalculates the means of each cluster. These should not require further
loops. (You will probably encounter empty clusters. It is possible to deal with these in clever ways,
but here it is sufficient to assign empty clusters a random mean (just like you initialized them)). Since
your initializations are random, make your results repeatable by using the set.seed() command at
the beginning (you can also make the seed value a fourth argument). Your function should return:

(a) the cluster parameters and cluster assignments for the best solution

(b) the sequence of values of the loss-function over k-means iterations for the best solution (this should
be non-increasing) (recall from the slides that the k-means loss function is the sum of the squared
distances of observations from their assigned means)

(c) The set of N terminal loss-function values for all initializations.

Do not hardcode the number of images or their size. Include R code. [25 pts]

3. Explain briefly what stopping criteria you used (i.e. the details of the second loop). [2 pts]

4. Run your code on the 1000 digits for K = 5, 10, 20. Set N to a largish number e.g. 25 (if this takes too
long, use a smaller number).For each setting of K, plot the cluster means (using show image) as well
as the evolution of the loss-function for the best solution (you can use a semi-log plot if that is clearer).

1

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://gist.github.com/brendano/39760


You do not have to print the other values returned by the function e.g. the cluster assignments, or the
values of the cluster means etc., just plots is sufficient [20 pts]

5. For each setting ofK, plot the distribution of terminal loss function values (using ggplot’s geom density()).

6. Explain briefly how you might choose the number of clusters K. [3 pts]

Bonus for an extra 20 points:

7. Modify your code to do k-medoids. You only need to change one part of your previous code viz. the
part that calculates the cluster prototype given cluster assignments. The cleanest way to do this is
to define a function called get prototype that takes a set of observations and returns the prototype.
For k-means this function just returns the mean of the observations. Note that the mean can also be
defined as

µ = argmin
x

|D|∑
i=1

(x− di)
2

Here D = (d1, . . . , D|D|) is the set of images input to get prototype, and the mean need not be part
of this set. For k-medoids, the prototype is defined as

µ = argmin
x∈D

|D|∑
i=1

(x− di)
2

In other words it finds an element in D that minimizes the sum-squared distance. Include R code for
your implementation of get prototype for k-mediods. You can use as many for loops as you want,
but the simplest is to loop over each observation assigned to that cluster, calculate the sum-squared
distance when that is set as the prototype, and return the best choice. [10 pts]

8. Run k-medoids for K = 5, 10, 20. Since this might take longer, you can use smaller values of N as well
as fewer images (e.g. just 100 digits), but report what numbers you used. For each choice of K, show
the cluster prototypes. Comment on the quality of the cluster prototypes, as well as the value of the
loss function vs k-means. [10 pts]

2 Problem 2: Finite-state Hidden Markov models (HMMs) [45pts]

(Continued from Problem 2 on Markov chains of the previous homework.)
Suppose now that we do not observe the state St of the Markov chain. Instead, at time t we observe Yt.

Yt can be anything: integers, reals, vectors, images. The only condition is that the probability distribution
of Yt depends only on St (and not e.g. on St−1). Write this as PY (Yt|St), with PY (·|St = i) giving the
probability (or probability density) of Yt given St = i (for simplicity, we let this same probability hold for
all t). Also write Y = (Y1, . . . YT ).

Our HMM model defines a probability distribution over (S,Y).

1. Write down P (S1 = s1, S2 = s2, . . . , ST = sT , Y1 = y1, . . . , YT = yt) in terms of π1, A and PY . [3pts]

For the earlier ‘Markov chain’ problem, we could quite efficiently calculate πt
i = P (St = i), the marginal

prior probability of St. We will now calculate the marginal posterior probabilities P (St = i|Y). Look at the
scanned notes for the Kalman filter for reference.

From now onwards, we will fix the values of Y, since these are our observations. Then define an N × 1
vector Bt, with Bt

i = P (Yt = yt|St = i).

1. Is this a probability vector (i.e. is it a nonnegative, adding up to 1)? [1pts]

2



Define α and β messages:

αt
i := P (St = i, Y1 = y1, . . . , Yt = yt) = P (St = i,Y1:t)

βt
i := P (Yt+1 = yt+1, . . . , YT = yT |St = i) = P (Yt+1:T |St = i)

Above := means ‘which we define to be equal to’, or ‘which we will call’.

2. αt and βt are both N × 1 vectors. Are these vectors probability vectors? [1pts]

3. Write P (St = i|Y) in terms of αt and βt. Include the normalization term (i.e summation of both sides
over i must give 1). In the scanned notes (e.g. top paragraph of page 2), we ignore the normalization
constant, but we can easily calculate it since we know that probabilities must sum or integrate to 1.

Use matrix (or vector) notation. You might have to use a transpose (e.g. (αt)
⊤
). Also, define 1 as an

N × 1 vector of ones, and note that
∑N

i=1 a
t
i = 1⊤at. Hint: First write it explicitly with summations

(compare with the Kalman filter). [5pts]

4. Write P (St = i, St+1 = j|Y) in terms of α, βt, A and B. Include the normalization term and use
matrix (or vector) notation. [5pts]

5. Write αt as a function of αt−1, A and B. Use matrix notation. An operation you’ll need here is the
element-wise product of two vectors. In R this is easy, just write V1 ∗ V2 for two vectors V1 and V2. In
matrix notation, the simplest way to write this is as diag(V2) · V1, where diag(V2) is an N ×N matrix
whose diagonal is V2 and whose other elements are 0. Verify that diag(V2) · V1 is a vector whose ith
element is the product of the ith elements of V1 and V2. [10pts]

6. Write βt as a function of βt+1, A and B. Use matrix notation. [10pts]

7. How will you calculate the first α and β at the beginning of the forward and backward pass?

8. Hopefully, you can now see a dynamic programming algorithm that sequentially calculates the αt’s,
and then the βt’s. These can then be combined to calculate P (St|Y) for any t. The overall algorithm
is called the Baum-Welch algorithm. Write down the cost in terms of T and N . [5pts]

9. Imagine instead we wanted to calculate the most like sequence of states (rather than the marginal
probabilities). One approach is to set St = argmaxP (St|Y) for all t. Why is this a bad idea? [5pts]

3


	Problem 1: The K-means algorithm. [55 pts]
	Problem 2: Finite-state Hidden Markov models (HMMs) [45pts]

