Stats 545: Homework 2

Due before midnight on Sunday, Sept 25.
All plots should have labelled axes and titles.

Important:Rcode, tables and figures should be part of a single .pdf or .html files from R
Markdown and knitr. See the class reading lists for a short tutorial. Any derivations can also be
in Markdown, in Latex or neatly written on paper which you can give to me.

You are free to discuss homeworks with other students, but should write your own code
and reports. If you collaborated significantly with anyone else, mention their names and the
nature of the collaboration

1 Problem 1: Implementing priority queues and sorting. [60 pts]

We will create two different implementations of a priority queue each with maximum capacity LMAX. While
there’s no need to limit the size of the queue, we will do this for simplicity, so that we can pre-allocate
memory (increasing the length of a vector in R by 1 is an O(n) operation: http://musicallyut.blogspot.
com/2012/07/pre-allocate-your-vectors.html)

First we will implement an ordered doubly linked list. This will be an R list (http://rforpublichealth.
blogspot.com/2015/03/basics-of-1lists.html) consisting of 3 vectors: data, next and prev (all of
length LMAX, containing the data, and indices to next and previous elements respectively). It will also
have three scalars, start, end and length, pointing to the first and last elements, and giving the length of
the linked-list.

1. Initially, your list will be empty, so that start = end = length = 0. Write a function make_d11 that
returns an empty doubly linked-list. [2pts]

2. Write a function get_d11_max that accepts a linked list as input and returns its maximum value. [3pts]

3. Write a function remove_d11 max to remove the maximum value from the input linked-list. Remember
to adjust prev, next, start and end. [5pts]

4. Write a function insert_dl1l_element to insert an element into your list. Recall that since your linked
list is sorted, you first need to find the correct location to insert, and then actually insert the element.
If your list already has LMAX elements, return an error. [10pts]
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Next, we will organize a heap as a vector, organizing its elements sequentially as in the right subfigure above.

5. What is the index of the parent node of element 4 of the vector? What are the indices of the left and
right child nodes of element ¢ of the vector? [5pts]
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We will implement a heap as a list consisting of a vector of length LMAX and a scalar length giving the actual
number of elements in the queue.

6. Write a function make heap to return an empty heap. [2pts]
7. Write a function to return the maximum element of the heap. [3pts]
8. Write a function to remove the maximum element of the heap. [10pts]
9. Write a function to insert a new element into the heap. For the last two, you can create additional

helper functions if you want to. [10pts]

10. Finally, write two functions to sort a vector of number of numbers using each of the two priority queues
(equivalently, you can write a single function that takes as an argument which priority queue to use).
The functions should first sequentially add elements to the queue, and then sequentially remove the
maximum element. Demonstrate that these work on an example with 20 random numbers. [10pts]

2 Problem 2: The knapsack problem [20pts]

Here we will implement the unbounded knapsack problem (unbounded refers to the fact we have an infinite
number of objects of each type).

1. Write a function that accepts as input two vectors of the same length, w and v, the ith elements of
which give the weight and value of the ith object. The function also accepts a scalar W_knapsack giving
the capacity of the knapsack. The function should return two objects, a scalar V_knapsack, giving the
maximum value of the knapsack, and a vector obj_count, the ith element of which gives the number
of objects of type i contained in the bag when it is filled optimally. [15pts]

2. Test your function for the case w = (1,2,3,4,5,6), v = (1,8,10,10,19,25) and W = 25. [5pts]

3 Problem 3: Markov chains [20pts]

Consider an N-state Markov chain. Call the state at time ¢ as Sy, which can take values from 1 to NV
(i.e. S; € {1,...,N}). The Markov chain has two parameters, an initial distribution over states 7!, and a
transition matrix A. The former is an N x 1 probability vector with 7} = P(S; = i). The latter is an N x N
stochastic matrix (i.e. a matrix whose rows are nonnegative and sum to 1). A;;, the (i,7)"" element of this
matrix gives the probability of moving from state i to state j. Thus P(Si;11 = j|S; = i) = A;;.

Write down as functions of A and 7:

1. P(S2=4,51=1) [2pts]

2. P(Sy=13) [3pts]
Let 7t be an N x 1 column-vector giving the probability over states at time ¢.

3. Write 72 as a function of of 7! and A. Use matrix notation (i.e no summations). [3pts]

4. How many summations and multiplications does this involve? This gives the cost is big-O notation,
write it down (i.e. is it O(N), O(N?),O(N?),0(2"V) or what?). [3pts]

5. Write 7! as a function of of 7! and A. Use matrix notation (write A2 for the multiplication of A with
itself, i.e. A2 = AA. This notation is slightly ugly, since A® means multiplying A with itself ¢ times,
while 7! means the probability vector at time ¢. This is ok, since it doesn’t make sense to multiply
a vector with itself). Write down the cost of calculating this quantity in big-O notation (now it is a
function of N and t). [3pts]



Consider a complete sequence of states S = (S1,Sa,...,S7-1, S7).
6. How many such sequences are there? [3pts]

7. Imagine we had a big table giving the probability of each sequence that is, someone has already
calculated it for us. If for some time ¢ we wanted to calculate the probability P(S; = ) by brute force,
we could marginalize out the other states:

P(S, =i) = > P(8S).

S such that S;=1

How many summations does this approach require? If we wanted to calculate the entire vector P(S;),
how many summations does that require. [3pts]

Comment: the moral here is that it is expensive to store and calculate marginal probabilities for a general
T-component sequence. By exploiting the Markov structure, we can save time and space
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