Stats 545: Midterm exam

This is a 75-minute exam for 32 points. Write your name and PUID on each sheet, and also include the number of answer sheets. Attempt all questions.

1 Miscellaneous [$8 \mathrm{pts}]$
1. What is a conjugate prior? Give an example of a conjugate prior.	[2pts]
2. What is the difference between gradient descent and <i>stochastic</i> gradient descent. List a few pros and cons.	[1pts]
3. Explain Newton's method to find the root of a function, and derive its update rule. What are its pros and cons	? [3pts]
4. Briefly explain the Wolfe conditions and why they are necessary.	[2pts]
2 Monte Carlo estimation [$8 \mathrm{pts}]$
1. Explain the pros and cons of importance sampling versus rejection sampling.	[1pts]
Below, you only have access to Gaussian and uniform random number generators. Provide R code or pseudocode whe	n asked.
2. For a random X, $p(X) \propto \log(1+X)$ if $X \in [0,2]$, and 0 else. Give a rejection sampling algorithm to sample X.	[2pts]
3. You want to calculate the mean of a standard Gaussian conditioned on it being larger than 4. Provide code to this using simple Monte Carlo sampling.	calculate [2pts]
4. What is the problem with this estimator?	[1pts]
5. Provide a better estimator using importance sampling.	[2pts]
3 MCMC [$7 \mathrm{pts}]$
1. Let $\mathcal{K}(x_{old}, x_{new})$ be a transition kernel producing a new sample x_{new} from x_{old} . What does it mean when:	
(a) \mathcal{K} has a prob. distribution π as its stationary distribution? Why is stationarity not sufficient for MCMC? (b) \mathcal{K} satisfies detailed balance with respect to a probability distribution π ?	[2pts] $[1pts]$
2. Show that detailed balance implies stationarity.	[1pts]
3. What is effective sample size (ESS)? Why is a large ESS necessary but not sufficient for good MCMC mixing?	[2pts]
4. For a fixed computational budget, what are the pros and cons of one vs multiple MCMC chains?	[1pts]
4 Metropolis-Hastings and Gibbs [$9 \mathrm{pts}]$
1. Consider a Metropolis-Hastings (MH) algorithm where you propose x_{new} from a $N(x_{old}, 1)$ distribution (where x current sample) and accept with probability $\min(1, \frac{2+x_{old}^2}{2+x_{new}^2})$. What is the stationary distribution?	c _{old} is the [2pts]
2. What is the stationary distribution if you proposed x_{new} from $N(0,1)$ instead?	[1pts]
3. What are the pros and cons of low and high MH acceptance probabilities?	[1pts]
You want to sample from $p(x, y \sigma) \propto \exp(-\frac{(x-y)^2}{y\sigma^2})$, where x is real-valued and $y \in \{1, 2, 3, 4, 5\}$ and σ is known.	
4. What is the conditional distribution $p(y x)$? And $p(x y)$? What families do these belong to?	[3pts]
5. Describe the overall Gibbs sampling algorithm briefly, and how you would use it to calculate the mean of x/y .	[1pts]
6. Explain why this will perform poorly for large values of σ .	[1pts]