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1 Functions of Survival Time

Let T be the survival time for a subject. Then P [T < 0] = 0 and T is a continuous random

variable. The Survival function is defined as

S(t) = P [T > t] = 1− F (t).

It is clear that S(0) = 1 and S(∞) = 0. The survival function can be explained by the probability

of the subject to live longer than t.

The hazard function is defined by

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T ≥ t)

∆t
.

It is clear that

h(t) =
f(t)

1− F (t)
=

f(t)

S(t)
,

where f and F are density or distribution of T . It can be explained as an instant hazard of the

people exposed.

The cumulative hazard function is defined as

H(t) =
∫ t

0
h(x)dx = − log[S(t)].

It can be explained as the cumulative hazard of the people exposed until time t.

2 Some Well Known Distributions

The density function of the exponential distribution with parameter λ > 0 is

f(t) = λe−λt,

for t > 0. It is clear that S(t) = e−λt, h(t) = λ and H(t) = λt. This distribution is the constant

hazard distribution.

The density of the Weibull distribution with parameter α and β is

f(t) = αγ(γt)α−1e−(γt)α .
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It is cleat that when α = 1 it is exponential distribution. The distribution is

F (t) = 1− e−(γt)α .

It is clear that

S(t) = e−(γt)α ,

h(t) = αγe−(γt)α = αγ(γt)α−1,

and

H(t) = (γt)α.

Thus, for Weibull distribution

log[− logS(t)] = α(log γ + log t).

Therefore, it is suggested to take a look at the estimated log[− logS(t)] versus log t to diagnose

Weibull distribution.

R defines the output for the parameters as

1. The scale parameter α, and

− log(γ) = β0 +
p−1∑
j=1

βjxj.

2. If α are equal for all groups, then Weibull distribution has the proportional hazard property.

In the default, R requires the scale parameters are the same.

If log(Y ) follow a normal distribution, then we call Y follows a log-normal distribution. There-

fore, the distribution function of log-normal with parameter µ and σ2 is

F (t) = Φ(
log t− µ

σ
).

The density function of Gamma-distribution with parameter α and β is

f(t) =
βα

Γ(α)
tα−1e−βt.

3 Non-parametric Estimate the Survival Function

There is no assumption for the distributions. Let us look at the leukemia dataset In Table 1.

There are total 42 observations in this dataset. The objective is to test the drug effect. Thus,

21 of them took drugs and 21 of them took placebo. The assignment for drugs or placebo are

completely randomized.

The response is the time (weeks) that the patient live. The predictor censor tells us the

corresponding patient drop off from the experiment at the time. Thus, we only know that the

patient live longer than the time we record. In this dataset, 1 means not dropoff or relapse and 0

means dropoff or censored . In this dataset, no patients in placebo dataset dropped off.
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Table 1: Survival Data For Leukemia

treat censor weeks treat censor weeks

drug 0 6 placebo 1 1

drug 1 6 placebo 1 1

drug 1 6 placebo 1 2

drug 1 6 placebo 1 2

drug 1 7 placebo 1 3

drug 0 9 placebo 1 4

drug 0 10 placebo 1 4

drug 1 10 placebo 1 5

drug 0 11 placebo 1 5

drug 1 13 placebo 1 8

drug 1 16 placebo 1 8

drug 0 17 placebo 1 8

drug 0 19 placebo 1 8

drug 0 20 placebo 1 11

drug 1 22 placebo 1 11

drug 1 23 placebo 1 12

drug 0 25 placebo 1 12

drug 0 32 placebo 1 15

drug 0 32 placebo 1 17

drug 0 34 placebo 1 22

drug 0 35 placebo 1 23
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Suppose there is no dropoff. Then, the empirical-survival function is

Ŝ(t) = 1− #{Patient > t}
#Patient

where #{Patient > t} means the number of the patient live longer than t.

Next, let us consider the dataset with censoring subjects. Let (Ti, Ci) be the record for obser-

vation i with observation (ti, δi), where Ti is the time and Ci is the indicator of censoring. Assume

that t1 ≤ t2 ≤ · · · ≤ tn. Then, if observation i relapse (δi = 1) then the instant density is f(ti)

and if observation i censors (δi = 0) then the observed probability is S(ti). Thus, we have the

likelihood function is

L(t1, · · · , tn) =
∏
δi=1

f(ti)
∏
δi=0

S(ti) =
∏
δi=1

h(ti)
δi

n∏
i=1

S(ti).

Thus, we can assume

Ŝ(ti) =
i∏

j=1

(1− λi),

where 0 ≤ λ1, · · · , λn < 1, because S(t) is right-continuous. Then, the mass function at t1, · · · , tn
is

f̂(ti) = Ŝ(ti−1)− Ŝi = λi

i−1∏
j=1

(1− λj).

Let di die and ni happen at ti. Then, the likelihood at ti part is

L̂i = f̂(ti)
diŜ(ti)

ni−di = λdi
i (1− λi)

ni−di .

Thus, we have

L =
∏
i

λdi
i (1− λi)

ni−di .

Thus,

λ̂i =
di
ni

.

Therefore, we have

Ŝ(t) =
∏
ti≤t

(1− di
ni

),

where di is the number of death and ni is the number of at risk (remaining). It is clear that

log Ŝ(t) =
∑
ti≤t

log(1− di
ni

),

Thus,

ˆV ar[log Ŝ(t)] =
∑
ti≤t

di
ni(ni − di)

.

There is another options (Greenwood’s Formula)

ˆV ar[Ŝ(t)] = Ŝ(t)2
∑
ti≤t

di
ni(ni − di)

.
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This estimator is called Kaplan Meier estimator. It is the ML estimator of the survival

function. Let us take a look at the estimator of the treatment group for the leukemia dataset.

The event happened at points: 6, 7, 9, 10, 11, 13, 16, 17, 19, 20, 22, 23, 25, 32, 34, 35 totally 16 points.

The number of death and at risk at the above time is (3, 21), (1, 17), (0, 16), · · ·. It is clear that

when t < 6, Ŝ(t) = 1; when 6 ≤ t < 7, di = 3 and ni = 21,

Ŝ(t) = (1− 3

21
) =

6

7
;

when 7 ≤ t < 9,

Ŝ(t) =
6

7
× (1− 1

17
);

and so on.

The significance test is based on a log-rank test. See detail in my output file. The analysis

result for this data set tells us a significant drug effect exist because the p-value is 0.0000417.

4 Parametric Method

Let us still consider the leukemia dataset. If we assume the distribution is exponential, then there

are two parameter λt and λp for treatment and placebo groups. Let us look at the treatment

group. We have h(t) = λt and S(t) = e−λtt. Then, the likelihood function is

L = λ
∑

δi
t exp[−λt

n∑
i=1

ti].

Thus,

λ̂t =

∑n
i=1 δi∑n
i=1 ti

.

For the treatment group, we have

λ̂t =
9

359
.

In R, the estimate of treatment is defined by

β̂t = − log(λ̂t) = 3.69.

Similarly, we have β̂p = 2.16. They are significant different because the p-value is 0.000049.

Let us look at the Weibull distribution. The hazard function is

h(t) = αλαtα−1.

It is clear that the hazard is a decreasing function of t if α < 1 and a increasing function of t if

α > 1. When α > 1, we call it is an accelerated life models.

It is not easy to compute the estimate of the parameters for Weibull distribution. Thus, a

numerical method is suggested. R has a function to fit the Weibull model. R rewrite the model

into

h(t) = αtα−1 exp[−β′x],
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and call α scale parameter. The output tells us that α̂ = 0.7322, and β̂t = 3.5157, β̂p = 2.248.

Thus, the hazard of treatment group is less than the hazard of placebo group.

We assume the scale parameter α is the same for the two groups. Thus, if we rewrite αβ′ by

β̃. Then, the hazard function becomes

h(t) = αtα−1 exp(−β̃′x) = h0(t) exp(−β̃′x).

It is clear that h0(t) does not dependent on the covariates or treatment. We call this model

proportional hazard model.

5 Semi-parametric method: proportional hazards model

The assumption for cox-proportional hazards model is

h(t) = h0(t)e
β′x,

where x is a vector of predictors and β is a vector of parameters independent of time t, h0 is only

a function of t; that is

β′x = β0 +
p−1∑
j=1

βjxj,

where xj are covariates or treatment.

Cox suggests to look at the partial likelihood

Lp =
n∏

i=1

eβ
′x∑

T≥ti e
β′x

to estimate the parameters. This function is called partial likelihood function. It is the hazards

of observation at ti over the sum of the hazard of all the remaining.

We can prove that the definition above is equivalent to

S(t) = [S0(t)]
eβ

′x
.

The estimates are the values to maximize the partial likelihood function. In the leukemia example,

βt = 0 and βp = 1.57. The p-value is 0.000014. Thus, the treatment is significant. Once the

parameters are estimated, we can estimate the baseline hazard function. R has those functions.

In R output, we can directly read the survival function Ŝ(t) which should be a step function.

Then, the hazard function at time ti is

h(ti) =
Sti−1

− Sti

Sti

;

and

Ĥ(ti) =
∑
j≤i

h(ti)(tj+1 − tj);

or

Ĥ(ti) =
∑
j≤i

h(ti)(tj − tj−1).

The non-parametric Kaplan-Meier estimator is the MLE of survival function. It is suggested

to compare the result with this estimator to diagnose the model.
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