
Poisson Model in Contingency Table

1. Two-way table. Let yij be the count collected in a two-way table with I rows and

J columns. Suppose that it is fitted by a loglinear model for Poisson data as

log λij = µ+ αi + βj + (αβ)ij (1)

for i ∈ {1, · · · , I} and j ∈ {1, · · · , J}, where λij = E(yij). Then, (1) is a saturated model. In

the absence of the interaction effect, the model becomes

log λij = µ+ αi + βj. (2)

Let λ̂ij be the fitted value of λij in (2). Then,

λ̂ij = eµ̂+α̂i+β̂j = eµ̂eα̂ieβ̂j . (3)

We want to show that (2) is an indepencen model, which satisfies

λ̂ij

λ̂++

=

(
λ̂i+

λ̂++

)(
λ̂+j

λ̂++

)
=

(
yi+
y++

)(
y+j

y++

)
, (4)

where λ̂i+ = yi+ =
∑J

j=1 yij, λ̂+j = y+j =
∑I

i=1 yij, λ̂++ = ŷ++ =
∑I

i=1

∑J
j=1 yij (the proof of

this relationship is omitted). An interpretation of (4) is that the joint probability equals to

the product of the marginal probabilities.

We only focus on the proof of (4). By (3), we have

λ̂i+ =
I∑

i=1

λ̂ij = eµ̂+α̂i

J∑
j=1

eβ̂j

λ̂i+ =
J∑

j=1

λ̂ij = eµ̂+β̂j

I∑
i=1

eα̂i

and

λ̂++ =
I∑

i=1

J∑
j=1

λ̂ij = eµ̂
(

I∑
i=1

eα̂i

) J∑
j=1

eβ̂j

 .

Then, we have (4).

2. Three-way table. Let yijk with λijk = E(yijk) for i ∈ {1, · · · , I}, j ∈ {1, · · · , J}, and
k ∈ {1, · · · , K} be the count collected from a three way table. The saturated model is

log λijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk. (5)

We can specify it into four reduced models.
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Mutual indepdence model. The main-effect model, which is the mutual independence

model, is

log λijk = µ+ αi + βj + γk. (6)

There is

λ̂ijk = eµ̂+α̂i+β̂j+γ̂k .

Then,

λ̂i++ = eµ̂+α̂i

 J∑
j=1

eβ̂j

( K∑
k=1

eγ̂k
)
,

λ̂+j+ = eµ̂+β̂j

(
I∑

i=1

eα̂i

)(
K∑
k=1

eγ̂k
)
,

λ̂++k = eµ̂+γ̂k

(
I∑

i=1

eα̂i

) J∑
j=1

eβ̂j

 ,

and

λ̂+++ = eµ̂
(

I∑
i=1

eα̂i

) J∑
j=1

eβ̂j

( k∑
k=1

eγ̂k
)
.

We obtain an equation for independence as(
λ̂ijk

λ̂+++

)
=

(
λ̂i++

λ̂+++

)(
λ̂+j+

λ̂+++

)(
λ̂++k

λ̂+++

)
. (7)

It means that the joint probability (i.e.,(i, j, k)) equals to produce of the three marginal

probabilities (i.e., i, j, and k, respectively).

Joint indepdence model. The model with one two-factor interaction effect, which is the

joint independence model, is

log λijk = µ+ αi + βj + γk + (αβ)ij. (8)

We have an equation for joint independence as(
λ̂ijk

λ̂+++

)
=

(
λ̂ij+

λ̂+++

)(
λ̂++k

λ̂+++

)
. (9)

Please show (9) by yourself. It means that the the joint probabilities equals to the product

of joint (i, j) and marginal k probabilities.

Conditional indepdence model. The model with two two-factor interaction effects, which

is the conditional independence model, is

log λijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik. (10)
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(
λ̂ijk

λ̂i++

)
=

(
λ̂ij+

λ̂i++

)(
λ̂i+k

λ̂i++

)
. (11)

Please show it by yourself. It means that conditioning on i, the (conditional) joint probabil-

ities (i.e., (j, k)|i) equals to the product of two (conditional) marginal probabilities (i.e., j|i
and k|i).

Uniform association model. The model with three two-factor interaction effects, which

is the uniform association model, is

log λijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk. (12)

This model does not have an obvious interpretation.

3. Simpson’s Paradox. Simpson’s paradox is common in three-way or multi-way

contingency table. We can interpret it by an example of diseases.

Assume a study compares the disease rates between two cities (e.g., A and B). The

disease rates of old people (i.e, > 40) were 0.01 and 0.02, respectively. The disease rates of

young people (i.e., ≤ 40) were 0.001 and 0.002, respectively. Suppose that 90% of city A

and 10% of city B were old people. The overall disease rates of city A was

rA = 0.01(0.9) + 0.001(0.1) = 0.0091

The overall disease rates of city A was

rB = 0.02(0.1) + 0.002(0.9) = 0.0038.

Then, we have rB < rA. You should have the conclusion that city A is worse than city

B when the age group ignored. The correct conclusion is drawn based on age groups. We

conclude city A is better than city B.

Note: I have read an article about cancer incidence. In the comparison of lung cancer

incidence rate among many countries in the world, a report showed that the lung cancer

rate in North European countries (e.g., Norway, Sweden, and Finland) was higher than the

lung cancer rate in South Asia countries. Note that air in North Europe was clear. One can

draw a conclusion that clear air can increase the lung cancer rate. The reason is that the

percentage of old people in North European countries is much higher than the percentage in

South Asia countries.

4. Ordinal variables. Suppose that both row and columns are ordinal in a two-way

table. We can assign scores to the two variables. Let ui be the scores for rows and vj be

those for columns. Then, we can propose a few models between the main effects and the

interaction effects models.
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The main effects model is

log λij = µ+ αi + βj,

where α1 = β1 = 0 in the baseline constraint. It means that the rows and columns are

independent. The predict count can be computed by

ŷij =
yi+y+j

y++

.

The interaction effects model

log λij = µ+ αi + βj + (αβ)ij

is the saturated model. Both models may not be interesting in practice since we are mostly

interested in the relationship between rows and columns. Then, we can use the following

three models.

Linear-by-linear association model. The linear-by-linear association model is

log λij = µ+ αi + βj + γuivj,

where the parameters are µ, αi, βj, and γ. It only has one degree of freedom in the term

for interaction effects. The significance of the interaction effect can be determined by the

p-value for γ. Let

ŷij = λ̂ij = eµ̂+α̂i+β̂j+γ̂uivj

be the fitted value for yij. Based on the model, the odds ratio between rows i and i′ and

columns j and j′ is

θ̂ii′,jj′ =
ŷij ŷi′j′

ŷij′ ŷi′j
= eγ̂(uivj+ui′vj′−ui′vj−uivj′ ).

Row-effect or column-effect model. The row-effect model is

log λij = µ+ αi + βj + γivj,

where the parameters are µ, αi, βj, and γi. To make the model well-defined, we need an

additional constraint on γi, which can be γ1 = 0, γI = 0, or
∑I

i=1 γi = 0. Therefore, the term

for the interaction effects has I − 1 degrees of freedom. We can still study odds ratios by

the above method.

The column-effect model is

log λij = µ+ αi + βj + γjui.

Study this model by yourself.
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We can show that the linear-by-linear association model is a special case of the row-effect

model. It is enough to study their interaction effects such that we have

γivj = γuivj ⇒ γi = γui ⇒
γ2 − γ1
u2 − u1

=
γ3 − γ2
u3 − u2

= · · · = γI − γi−1

uI − uI−1

.

The last equation also provides the null hypothesis in the test between the row-effect and

linear-by-linear association models.

Row-column-effect model. The row-column-effect model is

log λij = µ+ αi + βj + γiδj,

where the parameters are µ, αi, βj, γi, and δj. The constraints for the interaction effect

terms are γ1 = δ1 = 0, γI = δJ = 0, or
∑I

i=1 γi =
∑J

j=1 δj = 0. Thus, it has I + J − 2 degrees

of freedom in the interaction effect terms.

It has been pointed out that the row-column-effect model is not a generalized linear

model. In fact, it is a generalized nonlinear model. The reason is that interaction effects

terms are quadratic functions of unknown parameters. We cannot use the glm function to

directly fit this model.
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