
Overdispersion

For binomial or Poisson distribution, the variance is determined if the expected value is known.

Sometimes in real application, we observe a deviance of a Pearson goodness of fit much larger

than the expected if we assume the binomial or Poisson model. This can be explained by an

overdispersion model. Overdispersion model describes the case when the observed variances are

proportionally enlarged to the expected variance under the binomial or Poisson assumptions.

Binomial Data. Suppose yi ∼ Bin(ni, pi). Then, E(yi|pi) = nipi and V (yi|pi) = nipi(1− pi).

In addition, suppose pi is also a random variable with expected value pi0 and τ 2i . Then, we can

calculate the marginal expected value and variance of Yi by

E(yi) = E[E(yi|pi)] = E(nipi) = nipi0

and
V (yi) =V [E(yi|pi)] + E[V (yi|pi)]

=V (nipi) + E[nipi(1− pi)]

=n2
i τ

2
i + nipi0 − ni(p

2
i0 + τ 2i )

=(n2
i − ni)τ

2
i + nipi0(1− pi0).

In the overdispersion model, we need to choose τ 2i satisfying

V (yi)

nipi0(1− pi0)
= ϕ

where ϕ is a constant not depending on ni and pi0. Thus, we need to set up τ 2i as

(ni − 1)τ 2i
pi0(1− pi0)

= ϕ− 1 ⇒ τ 2i =
(ϕ− 1)pi0(1− pi0)

ni − 1
.

In this case, the observed variance is ϕ times as large as the expected variance.

Poisson Data. Suppose yi ∼ Poisson(λi). Then, E(yi|λi) = V (yi|λi) = λi. For the same

reason, assume λi is also aa random variable with expected value λi0 and variance τ 2i . Then, we

have

E(yi) = E[E(yi|λi)] = E(λi) = λi0

and

V (yi) = E[V (yi|λi)] + V [E(yi|λi)] = λi0 + τ 2i .

Similarly, if we choose τ 2i = (ϕ − 1)λi0, then, we have V (yi) = ϕE(yi). Also in this case, the

observed variance is ϕ times as large as the expected variance.

Models for overdispersion. When the overdispersion effect is significant, we recommend to

estimate (McCullagh(1983)) ϕ by

ϕ̂ =
X2

dfresidual

where X2 is the Pearson goodness of fit statistic. In this case, we need to adjust the likelihood ratio

goodness of fit statistic by G2/ϕ and the standard error of parameter estimate by the standard
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error from the fitted model multiplied by
√
ϕ̂. For example, suppose there are 10 rows in the

logistic model

log
p

1− p
= β0 + β1x.

Then, dfresidual = 8. Suppose the Pearson goodness of fit is X2 = 40, β̂0 = −4, β̂1 = 0.5 with

standard error 0.5 and 0.1 respectively. Then, the z-values are −8 for the intercept term and the

5 for the slope term. When the overdispersion model is considered, we have

ϕ̂ =
40

8
= 5,

and the adjusted standard error of intercept term is 0.5
√
5 = 1.118 and the adjusted standard

error of the slope term is 0.1
√
5 = 0.2236. Thus, the adjusted z values become 3.578 and 2.236

respectively.

Other Models. There are quite a few models which can not described by the overdispersion

model. Look at the following example.

Suppose in a disease study, we observe disease count yi and at risk population ξi at m units.

Suppose xi is the corresponding independent variable. A Poisson regression model can be proposed

as

log(λi) = log(ξi) + β0 + β1xi.

Then, we have

E(yi|λi) = V (yi|λi) = ξie
β0+β1xi .

Suppose the true model is not the exactly logliner model but a loglinear mixed effect model as

log(λi) = log(ξi) + β0 + β1xi +N(0, σ2).

Note that if log(U) ∼ N(µ, σ2), we have E(U) = eµ+σ2/2 and V (U) = (eσ
2 − 1)e2µ+σ2

. Then, we

have

E(λi) = ξie
β0+β1xieσ

2/2

and

V (λi) = ξ2i e
2(β0+β1xi)(e2σ

2 − eσ
2

).

Then, we have

E(yi) = ξie
β0+β1xieσ

2/2

and

V (yi) = ξie
β0+β1xieσ

2/2 + ξ2i e
2(β0+β1xi)(e2σ

2 − eσ
2

).

Since
V (yi)

E(yi)
= 1 + ξie

β0+β1xi(e3σ
2/2 − eσ

2/2)

is not a constant, this model is not an overdispersion model.

To make an overdispersion model, we need to choose

log(λi) = log(ξi) + β0 + β1xi +N(−σ2
i

2
, σ2

i ).
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Then, we have

E(λi) = ξie
β0+β1xi

and

V (λi) = ξ2i e
2(β0+β1xi)(eσ

2
i − 1).

If we choose

eσ
2
i = 1 +

(ϕ− 1)

ξieβ0+β1xi
⇒ eσ

2
i − 1 =

(ϕ− 1)

ξieβ0+β1xi
,

then, we have
V (yi)

E(yi)
= ϕ

and so this model is an overdispersion model.
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