Exponential Family

- Suppose Y_1, \dots, Y_n are independent random variables.
- Let $f(y_i; \theta_i, \phi)$ be PMF or PDF of Y_i , where ϕ is a scale parameter.
- If we can write

$$f(y_i; \theta_i, \phi) = \exp\left[\frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + c(y_i, \phi)\right],$$

then we call the PMF or the PDF $f(y_i; \theta_i, \phi)$ is an exponential family.

Normal Distribution

Assume $Y_i \sim N(\mu_i, \sigma^2)$. Then, $E(Y_i) = \mu_i$ and σ is a scale parameter. The PDF is

$$\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(y_i-\mu_i)^2}{2\sigma^2}}$$
$$=\exp\{\frac{y_i\mu_i-\mu_i^2/2}{\sigma^2}+\left[-\frac{1}{2}\log(2\pi\sigma^2)-\frac{y_i^2}{2\sigma^2}\right]\}.$$
We may use $\theta_i=\mu_i, \ b(\theta_i)=\theta_i^2/2, \ \phi=\sigma^2,$

 $a(\phi) = \phi, \ c(y_i, \phi) = -(1/2)\log(2\pi\phi) - y_i^2/(2\phi).$

Binomial Distribution

Assume $Y_i \sim Bin(n_i, p_i)$. Then, $E(Y_i) = n_i p_i$. The PMF is

$$\binom{n_i}{y_i} p_i^{y_i} (1-p_i)^{n_i-y_i}$$

$$= \exp\{y_i \log \frac{p_i}{1-p_i} + n_i \log(1-p_i) - \log \binom{n_i}{y_i}\}.$$
Thus, $\theta_i = \log[p_i/(1-p_i)], b(\theta_i) = n_i \log(1+e^{\theta_i}),$
 $\phi = 1, a(\phi) = 1, c(y, \phi) = -\log \binom{n_i}{y_i}.$

Poisson Distribution

Assume $Y_i \sim Poisson(\lambda_i)$. Then, $E(Y_i) = \lambda_i$. The PMF is

$$\frac{\lambda_i^{y_i}}{y_i!} e^{-\lambda_i}$$

= exp{ $y_i \log(\lambda_i) - \lambda_i - \log(y_i!)$ }.

Thus, $\theta_i = \log(\lambda_i), \ b(\theta_i) = e^{\theta_i}, \ \phi = 1, \ a(\phi) = 1,$ $c(y_i, \phi) = -\log(y_i!).$

Gamma Distribution

Assume $x_i \sim \Gamma(\alpha, \beta_i)$, β_i is unknown. Then, $E(x_i) = \alpha/\beta_i$. Then PMF is

$$\frac{\beta_i^{\alpha} x_i^{\alpha - 1}}{\Gamma(\alpha)} e^{-\beta_i x_i} = \exp\{\alpha \log x_i + \alpha \log(\beta_i) - \log(\Gamma(\alpha)) - \log(x_i) - \beta_i x_i\}.$$

Assume α is known. If we choose $y_i = x_i$, then $\theta_i = -\beta_i \ (\theta_i < 0), \ b(\theta_i) = -\alpha \log(-\theta_i), \ \phi = 1$ and $a(\phi) = 1.$

Remark: We can also choose $y_i = -x_i$ and $\theta_i = \beta_i$. Then, $b(\theta_i) = -\alpha \log \theta_i$.

Negative Binomial Distribution

Assume $X_i \sim NB(k, p_i)$. The PDF is

$$\binom{x_{i}-1}{k-1}p_{i}^{k}(1-p_{i})^{x_{i}}$$

$$=\exp\{x_{i}\log(1-p_{i})+k\log\frac{p_{i}}{1-p_{i}}-\log\binom{x_{i}-1}{k-1}\},\$$
for $x_{i}=0,1,\cdots$. We choose $y_{i}=x_{i}$. Then,
 $\theta_{i}=\log(1-p_{i}), b(\theta_{i})=-k\log[(1-e^{\theta_{i}})/e^{\theta_{i}}],\$
 $\phi=1, a(\phi)=1 \text{ and } c(y_{i},\phi)=-\log\binom{y_{i}-1}{k-1}.$ Then,
 $E(Y_{i})=E(X_{i})=b'(\theta_{i})=\frac{k}{1-e^{\theta_{i}}}=\frac{k}{p_{i}}$

and

$$V(Y_i) = V(X_i) = b''(\theta_i) = \frac{ke^{\theta_i}}{(1 - e^{\theta_i})^2} = \frac{k(1 - p_i)}{p_i^2}.$$

GLM

The definition of Generalized Linear Model (GLM) is based on exponential family. There are three components in GLM. They are

- Random component. Assume the distributions of the sample. Such as normal, binomial, Poisson and etc.
- Systematic component. Describe the form of predictor (independent) variables. Such as

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{ip} x_{ip}.$$

• Link function. Connect the unknown parameters to model. Such as

$$g[\mu_i(\theta_i)] = \eta_i$$

for some $g(\cdot)$, where $\mu_i(\theta_i) = E(y_i)$ is the expected value.

Canonical Link

If $\theta_i = \eta_i$ (or simply write $\theta = \eta$), then the canonical link is derived.

- Normal: identity link $g(\mu_i) = \mu_i$ or simply write $g(\mu) = \mu$ (same as below).
- Binomial: logistic link $g(\mu) = \log \frac{\mu}{1-\mu}$.
- Poisson: log link $g(\mu) = \log(\mu)$.
- Gamma: negative inverse link $g(\mu) = -1/\mu$.
- Negative binomial: $g(\mu) = \log[\mu/k(1 + \mu/k)]$.

- The most important cases are binomial and Poisson.
- Canonical link is just one of the link functions.
- Estimation is based on the maximum likelihood approach.
- Except the normal case, numerical computation is needed.

Link for Binomial

There are three link functions for binomial.

• Logistic link.

$$\log \frac{p_i}{1 - p_i} = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j$$

called logistic linear model or logistic regression.

• Inverse CDF link.

$$F^{-1}(p_i) = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j.$$

If $F = \Phi$, it is the probit link, called probit model.

• Complementary loglog link.

$$\log[-\log(1-p_i)] = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j.$$

Logistic Regression

Consider the simplest case. That is

$$\log(\frac{p_i}{1-p_i}) = \beta_0 + \beta_1 x_i.$$

Suppose $\hat{\beta}$ and $\hat{\beta}_1$ are the MLEs.

- Odds ratio: as x increases a units, the estimate of odds ratio is $e^{a\hat{\beta}_1}$.
- The significance of the odds ratio can be directly read by the *p*-value of β₁.
- Confidence interval can also be derived respectively.

An example

Table 1: Blood Pressure and Heart Disease

Blood	Heart Disease	
Pressure	Present	Absent
< 117	3	153
117 - 126	17	235
127 - 136	12	272
137 - 146	16	255
147 - 156	12	127
157 - 166	8	77
167 - 186	16	83
> 186	8	35

Goodness of Fit

Let \hat{n}_{ij} be the predicted counts of the model.

• Pearson χ^2 is

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \hat{n}_{ij})^{2}}{\hat{n}_{ij}}.$$

• Loglikehood ratio χ^2 is

$$G^{2} = 2\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log(n_{ij}/\hat{n}_{ij}).$$