
The Dose Problem

An important interest is to predict the value of the explanatory variable in a logistic

linear model for a target probability. Assume that a simple logistic linear model is given by
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for all i ∈ {1, · · · , I}. Denote the estimates of β0 and β1 as β̂0 and β̂1, and their variance

covariance estimator as
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where v01 = v10.

Suppose we want to find a value of x such that the predicted value of p is p0. Then, we

have
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The variance of x̂ is derived by the Delta theorem. By(
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we obtain the variance of x̂ as
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Then, we can compute the 1− α level confidence interval for the dose as

x̂± zα/2
√
v̂ar(x̂).

Example. In the bliss example, then we have β̂0 = −2.3238, β̂1 = 1.1619, v00 = 0.1746,

v01 = v10 = −0.0658, and v11 = 0.0329. If we choose p0 = 0.9, then

log
0.9

0.1
= β̂0 + β̂1x ⇒ x̂ =

2.197 + 2.3238

1.1619
= 3.8909.

By (
∂x̂
∂β0

∂x̂
∂β1

)
= (−0.8607,−3.3489),

we have

v̂ar(x̂) = 0.86072(0.1746) + 2(0.8607)(3.3489)(−0.0658) + 3.34892(0.0329) = 0.1190.

Then, the 95% confidence interval for x when p0 = 0.9 is

3.8909± 1.96
√
0.1190 = [3.6771, 4.1047].
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