The Dose Problem

An important interest is to predict the value of the explanatory variable in a logistic

linear model for a target probability. Assume that a simple logistic linear model is given by
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for all 4 € {1,---,I}. Denote the estimates of fy and f; as Bo and Bl, and their variance

covariance estimator as
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Suppose we want to find a value of x such that the predicted value of p is py. Then, we

where Vo1 = V10-

have
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The variance of Z is derived by the Delta theorem. By
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we obtain the variance of Z as
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Then, we can compute the 1 — « level confidence interval for the dose as

T+ Za/g\/ﬁ'(f).

FExample. In the bliss example, then we have @0 = —2.3238, 51 = 1.1619, voy = 0.1746,
vo1 = v190 = —0.0658, and vy; = 0.0329. If we choose py = 0.9, then
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By
(2 2 ) =(-0.8607,—3.3489),
we have

var (%) = 0.8607(0.1746) + 2(0.8607)(3.3489)(—0.0658) + 3.3489%(0.0329) = 0.1190.
Then, the 95% confidence interval for x when py = 0.9 is
3.8909 4+ 1.96v/0.1190 = [3.6771,4.1047].



