1. Problem 3.29.

(a)
\[E(X) = \sum_{k=0}^{4} kp_k = 1(0.05) + 2(0.10) + 4(0.35) + 8(0.40) + 16(0.10) = 6.45. \]

(b)
\[V(X) = \sum_{k=0}^{4} (k - 2.06)^2 p_k \]
\[= (1 - 6.45)^2 0.05 + (2 - 6.45)^2 0.10 + (4 - 6.45)^2 0.35 + (8 - 6.45)^2 0.27 + (16 - 6.45)^2 0.05 \]
\[= 15.6475. \]

(c) The standard error is
\[\sqrt{V(X)} = \sqrt{15.6475} = 3.9557. \]

(d)
\[E(X^2) = \sum_{k=0}^{4} k^2 p_k = 1(0.05) + 4(0.10) + 16(0.35) + 64(0.40) + 256(0.1) = 57.25. \]

Thus,
\[V(X) = E(X^2) - [E(X)]^2 = 57.25 - 6.45^2 = 15.6475. \]

(a)
\[E(Y) = 0 \times 0.6 + 1 \times 0.25 + 2 \times 0.1 + 3 \times 0.05 = 0.6. \]

(b)
\[E(100Y^2) = 0 \times 0.6 + 100 \times 0.25 + 400 \times 0.1 + 900 \times 0.05 = 110. \]

3. Problem 3.32.

(a)
\[E(X) = 16(0.2) + 18(0.5) + 20(0.3) = 18.2. \]
\[E(X^2) = 16^2(0.2) + 18^2(0.5) + 20^2(0.3) = 333.2. \]
\[V(X) = 333.2 - 18.2^2 = 1.96. \]

(b) You can do like
\[E(70X - 650) = 70E(X) - 650 = 70(18.2) - 650 = 624 \]
or
\[E(70X - 650) = (70 \times 16 - 650)(0.2) + (70 \times 18 - 650)(0.5) + (70 \times 20 - 650)(0.3) \]
\[= 624. \]
(c) You can do like
\[V(70X - 650) = 70^2V(X) = 70^2(1.96) = 9604, \]
or you can do like
\[
E[(70X - 650)^2]
= (70 \times 16 - 650)^2(0.2) + (70 \times 18 - 650)^2(0.5) + (70 \times 20 - 650)^2(0.3)
= 3988980.
\]
\[V(70X - 650) = 398980 - 624^2 = 9640. \]

(d) \[E(X - 0.008X^2) = E(X) - 0.008E(X^2) = 18.2 - 0.008(333.2) = 15.534. \]

\[
E(X) = 1 \times 0.2 + 2 \times 0.4 + 3 \times 0.3 + 4 \times 0.1 = 2.3.
\]
and
\[
E(X^2) = 1^2 \times 0.2 + 2^2 \times 0.4 + 3^2 \times 0.3 + 4^2 \times 0.1 = 6.1.
\]
Thus,
\[V(X) = E(X^2) - E^2(X) = 6.1 - 2.3^2 = 0.81. \]
Then, the pound left is \(Y = 100 - 5X \). Thus, we have
\[E(Y) = E(100 - 5X) = 100 - 5E(X) = 88.5 \]
and
\[V(Y) = V(100 - 5Y) = 25V(Y) = 20.25. \]

5. Problem 3.41.
Let \(h(X) = aX + b \), \(E(X) = \mu \) and \(V(X) = \sigma_X^2 \). Then
\[E[h(X)] = E[aX + b] = a\mu + b. \]
Thus
\[
V(X) = E[h(X) - E[h(X)]^2
= E\{aX + b - a\mu - b\}^2
= E\{a^2[X - \mu]^2\}
= a^2E(X - \mu)^2
= a^2V(X).
\]

6. Problem 3.42.
(a) Because
\[E[X(X - 1)] = E[X^2 - X] = E(X^2) - E(X) \]
\[\Rightarrow E(X^2) = E[X(X - 1) + E(X)] = 27.5 + 5 = 32.5. \]
(b)
\[V(X) = E(X^2) - [E(X)]^2 = 32.5 - 5^2 = 7.5. \]

(c) It is clear that
\[E[X(X - 1)] = E(X^2) - E(X) = V(X) + [E(X)]^2 - E(X). \]

7. Problem 3.46. The probability function is

(a) For v6,
\[b(3; 8, 0.6) = \binom{8}{3} 0.6^3 (1 - 0.6)^{8-3} = 56 \times 0.216 \times 0.0102 = 0.1234. \]

For v7,
\[b(3; 8, 0.35) = \binom{8}{3} 0.35^3 (1 - 0.35)^{8-3} = 56 \times 0.04288 \times 0.116 = 0.2785. \]

(b)
\[b(5; 8, 0.6) = \binom{8}{5} 0.6^5 (1 - 0.6)^{8-5} = 56 \times 0.07776 \times 0.064 = 0.2787. \]

(c) If you use version 6, the answer is
\[
P[3 \leq X \leq 5] = b(3; 8, 0.6) + b(4; 8, 0.6) + b(5; 8, 0.6) \\
= 0.1234 + 0.2322 + 0.2787 \\
= 0.6343.
\]

If you use version 7, the answer is
\[
P[3 \leq X \leq 5] = b(3; 7, 0.6) + b(4; 7, 0.6) + b(5; 7, 0.6) \\
= 0.1935 + 0.2903 + 0.2613 \\
= 0.7451.
\]

(d) If you use version 6, the answer is
\[
P(1 \leq X) = 1 - P(X = 0) = 1 - 0.9^{12} = 0.7175.
\]

If you use version 7, the answer is
\[
P(1 \leq X) = 1 - P(X = 0) = 1 - 0.9^9 = 0.6126.
\]

8. Problem 3.48. We should use Table A.1 to do the problem. We need to use the second of Table e.

(a)
\[
P(X \leq 3) = B(3; 25, 0.05) = 0.966 \\
P(X < 3) = B(2; 25, 0.05) = 0.873.
\]

(b)
\[
P(X \geq 4) = 1 - P(X \leq 3) = 1 - 0.966 = 0.036.
\]
(c) \[P(1 \leq X \leq 3) = B(3; 25, 0.05) - B(0; 25, 0.05) = 0.966 - 0.277 = 0.689. \]

(d) \[\text{E}(X) = 25 \times 0.05 = 1.25; \; \sigma^2 = 25 \times 0.05 \times 0.95 = 1.1875, \; \sigma = \sqrt{1.1875} = 1.0897. \]

(e) \[P(\text{none}) = 0.95^{50} = 0.0769. \]

(a) Let \(X \) be the number of second within those six. Then,
\[P(X = 1) = \binom{6}{1} 0.1^1 0.9^5 = 0.3543. \]

(b) Let \(X \) be the number of second within those six. Then,
\[P(X \geq 2) = 1 - P(X \leq 1) = 1 - \binom{6}{0} 0.9^6 - \binom{6}{1} 0.1^1 0.9^5 = 0.1143. \]

(c) Let \(X \) be the number of times in the examination. Then,
\[P(X \leq 5) = 0.9^4 + \binom{4}{1} 0.1 \times 0.9^4 = 0.9185. \]

The probability for a replacement is \(0.2 \times 0.4 = 0.08 \). Let \(X \) be the number of being replaced under warranty. Then, we have
\[X \sim \text{Bin}(10, 0.08). \]

Thus, we have
\[p(2) = \binom{10}{2} 0.08^2 0.92^8 = 0.1478. \]