1. Problem 2.77.

(a) Let \(p \) be the probability of defect. Then,

\[
(1 - p)^{25} = 0.85 \Rightarrow p = 0.0065
\]

(b)

\[
(1 - p)^{25} \geq 0.9 \Rightarrow p \leq 0.0042.
\]

2. Problem 2.78. Let \(A_i \) be the event that valve \(i \) opens. The event “at least one valve open” is the complement of “none open”. Therefore, the probability of “at least one valve open” is

\[
1 - P(\bigcap_{i=1}^{5} A_i) = 1 - \left(1 - 0.96\right)^5 = 0.9999999 \approx 1.
\]

The event “at least one vales fails to open” is the complement of “none of them fails to open”. Thus, it is

\[
1 - P(\bigcap_{i=1}^{5} A_i) = 1 - 0.96^5 = 0.1846.
\]

3. Problem 2.80.

\[
P(\text{system works}) = P((A_1 \cup A_2) \cup (A_3 \cap A_4))
\]

\[
= P(A_1 \cup A_2) + P(A_3 \cap A_4) - P((A_1 \cup A_2) \cap (A_3 \cap A_4))
\]

\[
= [P(A_1) + P(A_2) - P(A_1 \cap A_2)] + P(A_3)P(A_4) - [P(A_1) + P(A_2) - P(A_1 \cap A_2)]P(A_3)P(A_4)
\]

\[
= (0.9 + 0.9 - 0.9^2) + 0.8^2 - (0.9 + 0.9 - 0.9^2)0.8^2
\]

\[
= 0.9964.
\]

4. Problem 2.82. By the counting method, we have \(P(A) = P(B) = 1/6 \), \(P(A \cap B) = P(A \cap C) = P(B \cap C) = P(A \cap B \cap C) = 1/36 \). Since \(P(A \cap B) = P(A)P(B) \), we conclude that \(A \) and \(B \) are independent. Similarly, we conclude that \(A \) and \(C \), and \(B \) and \(C \) are independent. Since \(P(A \cap B \cap C) \neq P(A)P(B)P(C) \), we conclude that \(A, B, \) and \(C \) are not mutually independent.

5. Problem 2.84.

(a)

\[
P(A_1 \cap A_2 \cap A_3) = 0.95 \times 0.98 \times 0.80 = 0.7448.
\]

(b)

\[
1 - P(A_1 \cap A_2 \cap A_3) = 1 - 0.7448 = 0.2552.
\]

(c)

\[
P(A_1' \cap A_2' \cap A_3') = (1 - 0.95)(1 - 0.95)(1 - 0.80) = 0.0002.
\]

(d)

\[
P(A_1 \cap A_2' \cap A_3') = 0.95(1 - 0.95)(1 - 0.80) = 0.0038.
\]
(e)
\[
P(A_1 \cap A'_2 \cap A'_3) + P(A'_1 \cap A_2 \cap A'_3) + P(A'_1 \cap A'_2 \cap A_3)
\]
\[
= 0.95(1 - 0.95)(1 - 0.80) + 0.95(1 - 0.95)(1 - 0.80) + 0.80(1 - 0.95)(1 - 0.95)
\]
\[
= 0.021.
\]

(f) This cannot be computed by the conditions.

6. Problem 2.87.

(a)
\[
P(A_1 \cap A_2) = P(A_1) + P(A_2) - P(A_1 \cup A_2) = 0.55 + 0.65 - 0.80 = 0.4.
\]

(b)
\[
P(A_2|A_3) = \frac{P(A_2 \cap A_3)}{P(A_3)} = \frac{0.40}{0.70} = 0.5714.
\]

It describes the conditional probability of that the person likes the second vehicle given that the person likes the second vehicle.

(c) \(A_2\) and \(A_3\) are not independent because \(P(A_2|A_3) \neq P(A_2)\) or \(P(A_1 \cap A_3) \neq P(A_2)P(A_3)\).

(d)
\[
P(A_2 \cup A_3|A'_1) = \frac{P((A_2 \cup A_3) \cap A'_1)}{P(A'_1)}
\]
\[
= \frac{P(A_1 \cup A_2 \cup A_3) - P(A_1)}{P(A'_1)}
\]
\[
= \frac{0.88 - 0.55}{0.45}
\]
\[
= 0.7333.
\]

Note: The problem contains an error. It has \(P(A_2 \cap A_3) = 0.4 + 0.65 - 0.7 = 0.95 \geq P(A_1 \cup A_2 \cup A_3) = 0.99\). However, this does not affect the results.

7. Problem 2.88. Let \(D\) be the disease and \(A\) be the test to be positive. Then, \(P(D) = 0.05\), \(P(A|D) = 0.98\), and \(P(A'|D') = 0.99\). Let \(A_1\) and \(A_2\) be positive result in the first and the second times. Then, \(P(A_1 \cap A_2|D) = 0.98^2 = 0.9604\) and \(P(A_1 \cap A_2|D') = 0.01^2 = 0.0001\). By Bayes’s Theorem, we have

\[
P(D|A_1 \cap A_2) = \frac{P(A_1 \cap A_2|D)P(D)}{P(A_1 \cap A_2|D)P(D) + P(A_1 \cap A_2|D')P(D')}
\]
\[
= \frac{0.9604 \times 0.05}{0.9604 \times 0.05 + 0.0001 \times 0.95}
\]
\[
= 0.9980.
\]