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6.2 Maximum Likelihood Estimation

Definition

The MLE, which attempts to maximize L(θ) to estimate θ, is the
most important approach in statistics. The maximum likelihood
estimator (MLE) θ̂ is the maximum of L(θ), i.e,

θ̂ = argmax
θ

L(θ).
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6.2 Maximum Likelihood Estimation

Properties

▶ The MLE θ̂ is a function of data. Thus, it is random.

▶ For any continuous function g(θ), the MLE of g(θ) is g(θ̂),
which means it is transformation invariant.

▶ The choice of distributions is important in maximum
likelihood estimation.
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6.2 Maximum Likelihood Estimation

As estimator θ̃ of θ is unbiased if

E(θ̃) = θ.

An unbiased estimator is not invariant under transformations. For
example, Suppose that θ̃ is an unbiased estimator of θ. In general,
θ̃2 is not an unbiased estimator of θ2:

E(θ̃2) ̸= θ2.
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6.2 Maximum Likelihood Estimation

Computation

Let ℓ(θ) = log L(θ) is the loglikelihood function, where

θ = (θ1, . . . , θk)
⊤.

Then, θ is one of the solutions to

∇ℓ(θ) = (
∂ℓ(θ)

∂θ1
, · · · , ∂ℓ(θ)

∂θk
)⊤ = 0.

We need to make sure the solution is a global maximum (this is a
hard topic in research). If the solution is unique, then we
guarantee it is the global maximum.
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6.2 Maximum Likelihood Estimation

Example for SS, MSS, MLE, and Unbiasedness

Example: Let X1, · · · ,Xn be iid Bernoulli(θ). The PMF is
P(X = 1) = θ; P(X = 0) = 1− θ.
Solution: The joint PMF is

fθ(X1, · · · ,Xn) =
n∏

i=1

θXi (1− θ)1−Xi

=θ
∑n

i=1 Xi (1− θ)
∑n

i=1(1−Xi )

=θnX̄ (1− θ)n(1−X̄ ).

Be factorization theorem, we have that SS = {X̄}. Because θ is
one-dimensional, it is also the MSS.
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6.2 Maximum Likelihood Estimation

As a function of θ, the likelihood functions is

L(θ) = θnX̄ (1− θ)n(1−X̄ ).

The loglikelihood function is

ℓ(θ) = log L(θ) = nX̄ log θ + n(1− X̄ ) log(1− θ).
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6.2 The Likelihood Function

Taking derivative, we have

ℓ′(θ) =
nX̄

θ
+

n(1− X̄ )

1− θ
,

which is called the score function. Solving ℓ′(θ) = 0, we obtain the
MLE

θ̂ = X̄ .

Because
E(θ̂) = θ,

we conclude that it is also an unbiased estimator. Moreover, X̄ 2 is
the MLE but not an unbiased estimator of θ2.
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6.2 Maximum Likelihood Estimation

Example: Let X1, · · · ,Xn be iid Poisson(θ).
Solution: The joint PMF is

fθ(X1, · · · ,Xn) =
n∏

i=1

θXi

Xi !
e−θ

=
θ
∑n

i=1 Xi∏n
i=1 Xi !

e−nθ

=

(
n∏

i=1

Xi !

)−1 (
θnX̄ e−nθ

)
.

Note that only the second term contains both θ and data. We
have SS = {X̄}. It is also the MSS because the size is 1.
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6.2 Maximum Likelihood Estimation

Treating it as a function of θ, we obtain the likelihood function as

L(θ) =

(
n∏

i=1

Xi !

)−1 (
θnX̄ e−nθ

)
.

The log-likelihood function is

ℓ(θ) = log L(θ) = − log

(
n∏

i=1

Xi !

)
+ nX̄ log θ − nθ.

Then,

ℓ′(θ) =
nX̄

θ
− n = 0 ⇒ θ̂ = X̄ .

It is also unbiased because

E(θ̂) = θ.
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6.2 Maximum Likelihood Estimation

Example: Example 6.2.3: Let X1, · · · ,Xn be iid Exp(θ). The PDF
is f (x) = θe−θx .
Solution: The joint PDF is

fθ(X1, · · · ,Xn) =
n∏

i=1

θe−θXi

=θne−nX̄θ

We have SS = {X̄} and it is also the MSS because the size is 1.
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6.2 Maximum Likelihood Estimation

Treating it as a function of θ, we obtain the likelihood function as

L(θ) = θne−nX̄θ.

The log-likelihood function is

ℓ(θ) = log L(θ) = n log θ − nX̄θ.

Then,

ℓ′(θ) =
n

θ
− nX̄ = 0 ⇒ θ̂ =

1

X̄
.

It is not unbiased (omitted).
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6.2 Maximum Likelihood Estimation

Example: Example 6.2.4: Let X1, · · · ,Xn be iid from PMF
p1 = P(X = 1) = θ, p2 = P(X = 2) = θ2 and
p3 = P(X = 3) = 1− θ− θ2. Check only the SS and MSS problem.
Solution: We express the PMF of

fθ(Xi ) = θI (Xi=1)θ2I (Xi=2)(1− θ − θ2)I (Xi=3).

Thus, the likelihood function is

L(θ) =
n∏

i=1

{θI (Xi=1)θ2I (Xi=2)(1− θ − θ2)I (Xi=3)}

=θn1θ2n2(1− θ − θ2)n−n1−n2 ,

where n1 is the total number of 1 and n2 is the total number of 2
in the data. We have SS = {n1, n2}. Further, we can show it is
MSS. Note that the size of θ is 1. The proof (omitted) is not easy.
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6.2 Maximum Likelihood Estimation

Example: Example 6.2.5: Let X1, · · · ,Xn be iid Uniform(θ).
Solution: Let X(1) = min(Xi ) and X(n) = max(Xi ). We express
the PDF as

f (x) =
1

θ
I (0 ≤ x ≤ θ) =

1

θ
I (0 ≤ x)I (x ≤ θ).

The likelihood function is

L(θ) =
n∏

i=1

1

θ
I (0 ≤ Xi )I (Xi ≤ θ) =

1

θn
I (X(1) ≥ 0)I (X(n) ≤ θ).

Thus, SS = {X(n)} = {max(Xi )}, which is also an MSS. Observe
the above, we have the MLE

θ̂ = X(n).
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6.2 Maximum Likelihood Estimation

Next, we want to compute the PDF of X(n). For any x ∈ [0, θ],

P(X(n) ≤ x) =P(X1 ≤ x ,X2 ≤ x , . . . ,Xn ≤ x)

=
n∏

i=1

P(Xi ≤ x)

=
xn

θn
.

Thus, the PDF of X(n) is

fn(x) =
d

dx

xn

θn
=

nxn−1

θn
.
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6.2 Maximum Likelihood Estimation

Further, we have

E(X(n)) =

∫ θ

0
xfn(x)dx =

n

θn

∫ θ

0
xndx =

nθ

n + 1
.

By

E(X 2
(n)) =

∫ θ

0
x2fn(x)dx =

n

θn

∫ θ

0
xn+1dx =

nθ2

n + 2
,

we have

V(X(n)) =
nθ2

n + 2
− (

nθ

(n + 1)
)2 =

nθ2

(n + 1)2(n + 2)
.

Thus, the MLE is not unbiased. The bias is

Bias(X(n)) = E(X(n))− θ = − θ

n + 1
.

Tonglin Zhang, Department of Statistics, Purdue University 6.2 Maximum Likelihood Estimation



6.2 Maximum Likelihood Estimation

Example: Example 6.2.2: Let X1, · · · ,Xn be iid N(µ, σ2
0) with

known σ2
0.

Solution: Let θ = µ. The joint PDF is

fθ(X1, · · · ,Xn) =
n∏

i=1

1√
2πσ0

e
− 1

2σ2
0
(Xi−µ)2

=(2π)−
n
2σ−n

0 e
− 1

2σ2
0

∑n
i=1(Xi−µ)2

=

{
(2π)−

n
2 θ−n

0 e
− 1

2σ2
0

∑n
i=1(Xi−X̄ )2

}{
e
− n

2σ2
0
(X̄−µ)2

}
Note that only the second term contains both µ and data. We
have SS = {X̄}. It is also an MSS.
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6.2 Maximum Likelihood Estimation

The log-likelihood function is

ℓ(µ) = −n

2
log(2π)− n

2
log σ2

0 −
1

2σ2
0

n∑
i=1

(Xi − X̄ )2 − n

2σ2
0

(X̄ − µ)2.

Then,

ℓ′(µ) =
n

σ2
0

(X̄ − µ) ⇒ µ̂ = X̄ .

Clearly, it is unbiased.
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6.2 Maximum Likelihood Estimation

Example: Example 6.2.6: Let X1, · · · ,Xn be iid N(µ, σ2).
Solution: Let θ = (θ1, θ2)

⊤ = (µ, σ2)⊤. The joint PDF is

fθ(X1, · · · ,Xn) =
n∏

i=1

1√
2πσ

e−
1

2σ2 (Xi−µ)2

=(2π)−
n
2 θ

− n
2

2 e
− 1

2θ2

∑n
i=1(Xi−θ1)2

=(2π)−
n
2 θ

− n
2

2 e
− 1

2θ2
[
∑n

i=1(Xi−X̄ )2+n(X̄−θ1)2]

Note that only the second term contains both θ and data. We
have SS = {X̄ ,

∑n
i=1(Xi − X̄ )2}. Using

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2,

we also have SS = {X̄ ,S2} (SS is not unique). It is also the MSS
because the size is 2, equal to the size of θ.
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6.2 Maximum Likelihood Estimation

Treating it as a function of θ, we obtain the likelihood function as

L(θ) = (2π)−
n
2 θ

− n
2

2 e
− 1

2θ2
[
∑n

i=1(Xi−X̄ )2+n(X̄−θ1)2].

The log-likelihood function is

ℓ(θ) = −n

2
log(2π)− n

2
log θ2 −

1

2θ2
[

n∑
i=1

(Xi − X̄ )2 + n(X̄ − θ1)
2].
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6.2 Maximum Likelihood Estimation

Then,

∂ℓ(θ)

∂θ1
=

n

θ2
(X̄ − µ)

∂ℓ(θ)

∂θ2
=− n

2θ2
+

1

2θ22
[

n∑
i=1

(Xi − X̄ )2 + n(X̄ − θ1)
2].

Thus, we have
µ̂ =θ̂1 = X̄

σ̂2 =θ̂2 =
1

n

n∑
i=1

(Xi − X̄ )2.

Clearly µ̂ is unbiased. Using E(S2) = σ2, we conclude that σ̂2 is
not unbiased. It is biased. The bias is

E(σ̂2)− σ2 = E(
n − 1

n
S2)− σ2 =

n − 1

n
σ2 − σ2 = −σ2

n
.
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