Section 6.2 Maximum Likelihood Estimation

Tonglin Zhang

Definition

The MLE, which attempts to maximize $L(\theta)$ to estimate θ , is the most important approach in statistics. The maximum likelihood estimator (MLE) $\hat{\theta}$ is the maximum of $L(\theta)$, i.e,

$$\hat{\theta} = rg \max_{\theta} L(\theta).$$

Properties

- ightharpoonup The MLE $\hat{m{ heta}}$ is a function of data. Thus, it is random.
- ► For any continuous function $g(\theta)$, the MLE of $g(\theta)$ is $g(\hat{\theta})$, which means it is transformation invariant.
- ► The choice of distributions is important in maximum likelihood estimation.

As estimator $\tilde{\theta}$ of θ is unbiased if

$$E(\tilde{\theta}) = \theta.$$

An unbiased estimator is not invariant under transformations. For example, Suppose that $\tilde{\theta}$ is an unbiased estimator of θ . In general, $\tilde{\theta}^2$ is not an unbiased estimator of θ^2 :

$$\mathrm{E}(\tilde{\theta}^2) \neq \theta^2$$
.

Computation

Let $\ell(\theta) = \log L(\theta)$ is the loglikelihood function, where

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)^{\top}.$$

Then, θ is one of the solutions to

$$\nabla \ell(\boldsymbol{\theta}) = (\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_1}, \cdots, \frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_k})^{\top} = \mathbf{0}.$$

We need to make sure the solution is a global maximum (this is a hard topic in research). If the solution is unique, then we guarantee it is the global maximum.

Example for SS, MSS, MLE, and Unbiasedness

Example: Let X_1, \dots, X_n be iid Bernoulli(θ). The PMF is

 $P(X = 1) = \theta; P(X = 0) = 1 - \theta.$

Solution: The joint PMF is

$$f_{\theta}(X_{1}, \dots, X_{n}) = \prod_{i=1}^{n} \theta^{X_{i}} (1 - \theta)^{1 - X_{i}}$$

$$= \theta^{\sum_{i=1}^{n} X_{i}} (1 - \theta)^{\sum_{i=1}^{n} (1 - X_{i})}$$

$$= \theta^{n\bar{X}} (1 - \theta)^{n(1 - \bar{X})}.$$

Be factorization theorem, we have that $SS = \{\bar{X}\}$. Because θ is one-dimensional, it is also the MSS.

As a function of θ , the likelihood functions is

$$L(\theta) = \theta^{n\bar{X}} (1 - \theta)^{n(1 - \bar{X})}.$$

The loglikelihood function is

$$\ell(\theta) = \log L(\theta) = n\bar{X}\log\theta + n(1-\bar{X})\log(1-\theta).$$

6.2 The Likelihood Function

Taking derivative, we have

$$\ell'(\theta) = \frac{n\bar{X}}{\theta} + \frac{n(1-\bar{X})}{1-\theta},$$

which is called the score function. Solving $\ell'(\theta) = 0$, we obtain the MLE

$$\hat{\theta} = \bar{X}$$
.

Because

$$E(\hat{\theta}) = \theta,$$

we conclude that it is also an unbiased estimator. Moreover, \bar{X}^2 is the MLE but not an unbiased estimator of θ^2 .

Example: Let X_1, \dots, X_n be iid $Poisson(\theta)$.

Solution: The joint PMF is

$$f_{\theta}(X_{1}, \dots, X_{n}) = \prod_{i=1}^{n} \frac{\theta^{X_{i}}}{X_{i}!} e^{-\theta}$$

$$= \frac{\theta^{\sum_{i=1}^{n} X_{i}}}{\prod_{i=1}^{n} X_{i}!} e^{-n\theta}$$

$$= \left(\prod_{i=1}^{n} X_{i}!\right)^{-1} \left(\theta^{n\bar{X}} e^{-n\theta}\right).$$

Note that only the second term contains both θ and data. We have $SS = \{\bar{X}\}$. It is also the MSS because the size is 1.

Treating it as a function of θ , we obtain the likelihood function as

$$L(\theta) = \left(\prod_{i=1}^{n} X_{i}!\right)^{-1} \left(\theta^{n\bar{X}} e^{-n\theta}\right).$$

The log-likelihood function is

$$\ell(\theta) = \log L(\theta) = -\log \left(\prod_{i=1}^n X_i!\right) + n\bar{X}\log \theta - n\theta.$$

Then,

$$\ell'(\theta) = \frac{n\bar{X}}{\theta} - n = 0 \Rightarrow \hat{\theta} = \bar{X}.$$

It is also unbiased because

$$E(\hat{\theta}) = \theta.$$

Example: Example 6.2.3: Let X_1, \dots, X_n be iid $Exp(\theta)$. The PDF is $f(x) = \theta e^{-\theta x}$.

Solution: The joint PDF is

$$f_{\theta}(X_1, \dots, X_n) = \prod_{i=1}^n \theta e^{-\theta X_i}$$

= $\theta^n e^{-n\bar{X}\theta}$

We have $SS = \{\bar{X}\}$ and it is also the MSS because the size is 1.

Treating it as a function of θ , we obtain the likelihood function as

$$L(\theta) = \theta^n e^{-n\bar{X}\theta}$$

The log-likelihood function is

$$\ell(\theta) = \log L(\theta) = n \log \theta - n\bar{X}\theta.$$

Then,

$$\ell'(\theta) = \frac{n}{\theta} - n\bar{X} = 0 \Rightarrow \hat{\theta} = \frac{1}{\bar{X}}.$$

It is not unbiased (omitted).

Example: Example 6.2.4: Let X_1, \dots, X_n be iid from PMF $p_1 = P(X = 1) = \theta$, $p_2 = P(X = 2) = \theta^2$ and $p_3 = P(X = 3) = 1 - \theta - \theta^2$. Check only the SS and MSS problem. **Solution:** We express the PMF of

$$f_{\theta}(X_i) = \theta^{I(X_i=1)} \theta^{2I(X_i=2)} (1 - \theta - \theta^2)^{I(X_i=3)}.$$

Thus, the likelihood function is

$$L(\theta) = \prod_{i=1}^{n} \{ \theta^{I(X_i=1)} \theta^{2I(X_i=2)} (1 - \theta - \theta^2)^{I(X_i=3)} \}$$

= $\theta^{n_1} \theta^{2n_2} (1 - \theta - \theta^2)^{n-n_1-n_2},$

where n_1 is the total number of 1 and n_2 is the total number of 2 in the data. We have $SS = \{n_1, n_2\}$. Further, we can show it is MSS. Note that the size of θ is 1. The proof (omitted) is not easy.

Example: Example 6.2.5: Let X_1, \dots, X_n be iid $Uniform(\theta)$.

Solution: Let $X_{(1)} = \min(X_i)$ and $X_{(n)} = \max(X_i)$. We express

the PDF as

$$f(x) = \frac{1}{\theta}I(0 \le x \le \theta) = \frac{1}{\theta}I(0 \le x)I(x \le \theta).$$

The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 \le X_i) I(X_i \le \theta) = \frac{1}{\theta^n} I(X_{(1)} \ge 0) I(X_{(n)} \le \theta).$$

Thus, $SS = \{X_{(n)}\} = \{\max(X_i)\}$, which is also an MSS. Observe the above, we have the MLE

$$\hat{\theta} = X_{(n)}$$
.

Next, we want to compute the PDF of $X_{(n)}$. For any $x \in [0, \theta]$,

$$P(X_{(n)} \le x) = P(X_1 \le x, X_2 \le x, \dots, X_n \le x)$$

$$= \prod_{i=1}^n P(X_i \le x)$$

$$= \frac{x^n}{\theta^n}.$$

Thus, the PDF of $X_{(n)}$ is

$$f_n(x) = \frac{d}{dx} \frac{x^n}{\theta^n} = \frac{nx^{n-1}}{\theta^n}.$$

Further, we have

$$E(X_{(n)}) = \int_0^\theta x f_n(x) dx = \frac{n}{\theta^n} \int_0^\theta x^n dx = \frac{n\theta}{n+1}.$$

Ву

$$E(X_{(n)}^2) = \int_0^\theta x^2 f_n(x) dx = \frac{n}{\theta^n} \int_0^\theta x^{n+1} dx = \frac{n\theta^2}{n+2},$$

we have

$$V(X_{(n)}) = \frac{n\theta^2}{n+2} - (\frac{n\theta}{(n+1)})^2 = \frac{n\theta^2}{(n+1)^2(n+2)}.$$

Thus, the MLE is not unbiased. The bias is

$$\operatorname{Bias}(X_{(n)}) = \operatorname{E}(X_{(n)}) - \theta = -\frac{\theta}{n+1}.$$

Example: Example 6.2.2: Let X_1, \dots, X_n be iid $N(\mu, \sigma_0^2)$ with known σ_0^2 .

Solution: Let $\theta = \mu$. The joint PDF is

$$f_{\theta}(X_{1}, \dots, X_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_{0}} e^{-\frac{1}{2\sigma_{0}^{2}}(X_{i}-\mu)^{2}}$$

$$= (2\pi)^{-\frac{n}{2}} \sigma_{0}^{-n} e^{-\frac{1}{2\sigma_{0}^{2}} \sum_{i=1}^{n} (X_{i}-\mu)^{2}}$$

$$= \left\{ (2\pi)^{-\frac{n}{2}} \theta_{0}^{-n} e^{-\frac{1}{2\sigma_{0}^{2}} \sum_{i=1}^{n} (X_{i}-\bar{X})^{2}} \right\} \left\{ e^{-\frac{n}{2\sigma_{0}^{2}}(\bar{X}-\mu)^{2}} \right\}$$

Note that only the second term contains both μ and data. We have $SS=\{\bar{X}\}$. It is also an MSS.

The log-likelihood function is

$$\ell(\mu) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\sigma_0^2 - \frac{1}{2\sigma_0^2}\sum_{i=1}^n (X_i - \bar{X})^2 - \frac{n}{2\sigma_0^2}(\bar{X} - \mu)^2.$$

Then,

$$\ell'(\mu) = \frac{n}{\sigma_0^2}(\bar{X} - \mu) \Rightarrow \hat{\mu} = \bar{X}.$$

Clearly, it is unbiased.

Example: Example 6.2.6: Let X_1, \dots, X_n be iid $N(\mu, \sigma^2)$. **Solution:** Let $\theta = (\theta_1, \theta_2)^\top = (\mu, \sigma^2)^\top$. The joint PDF is

$$f_{\theta}(X_{1}, \dots, X_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^{2}}(X_{i}-\mu)^{2}}$$

$$= (2\pi)^{-\frac{n}{2}} \theta_{2}^{-\frac{n}{2}} e^{-\frac{1}{2\theta_{2}} \sum_{i=1}^{n} (X_{i}-\theta_{1})^{2}}$$

$$= (2\pi)^{-\frac{n}{2}} \theta_{2}^{-\frac{n}{2}} e^{-\frac{1}{2\theta_{2}} [\sum_{i=1}^{n} (X_{i}-\bar{X})^{2} + n(\bar{X}-\theta_{1})^{2}]}$$

Note that only the second term contains both θ and data. We have $SS = \{\bar{X}, \sum_{i=1}^{n} (X_i - \bar{X})^2\}$. Using

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2},$$

we also have $SS = {\bar{X}, S^2}$ (SS is not unique). It is also the MSS because the size is 2, equal to the size of θ .

Treating it as a function of θ , we obtain the likelihood function as

$$L(\theta) = (2\pi)^{-\frac{n}{2}} \theta_2^{-\frac{n}{2}} e^{-\frac{1}{2\theta_2} \left[\sum_{i=1}^n (X_i - \bar{X})^2 + n(\bar{X} - \theta_1)^2\right]}.$$

The log-likelihood function is

$$\ell(\theta) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\theta_2 - \frac{1}{2\theta_2}\left[\sum_{i=1}^n (X_i - \bar{X})^2 + n(\bar{X} - \theta_1)^2\right].$$

Then,

$$\begin{split} \frac{\partial \ell(\theta)}{\partial \theta_1} &= \frac{n}{\theta_2} (\bar{X} - \mu) \\ \frac{\partial \ell(\theta)}{\partial \theta_2} &= -\frac{n}{2\theta_2} + \frac{1}{2\theta_2^2} [\sum_{i=1}^n (X_i - \bar{X})^2 + n(\bar{X} - \theta_1)^2]. \end{split}$$

Thus, we have

$$\hat{\mu} = \hat{\theta}_1 = \bar{X}$$

$$\hat{\sigma}^2 = \hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

Clearly $\hat{\mu}$ is unbiased. Using $E(S^2) = \sigma^2$, we conclude that $\hat{\sigma}^2$ is not unbiased. It is biased. The bias is

$$E(\hat{\sigma}^2) - \sigma^2 = E(\frac{n-1}{n}S^2) - \sigma^2 = \frac{n-1}{n}\sigma^2 - \sigma^2 = -\frac{\sigma^2}{n}.$$