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Extreme weather events are related to low birth weight. Monitoring this relationship
in the context of climate change has a wide range of public health implications, as birth
weight is a key indicator of many life course health outcomes, and climate change in-
creases both frequency and intensity of extreme weather events. However, most birth
weight data are not available with sufficient spatial and temporal resolution. The current
study examined the relationship between birth weight and weather variables in a series
of aggregations, from individual birth outcomes to month-county, season-county, and
county-only mean birth weights. Data were based on a 20 % sample of White mothers
aged 19 to 38 from the United States Natality Data Files, and the baseline model was for
the 1974–1978 and 1984–1988 periods with 2,269,009 and 2,652,552 individual birth
records, respectively. The evaluation was based on multiple regression for aggregation
effects, and conditional autoregressive and spatial association models for spatial clus-
tering effects. The results show that the number of extreme cold and hot days during
the birth month is inversely associated with birth weight, and that temporal aggrega-
tion by month-county or season-county was likely to preserve the relationship between
birth weight and extreme weather from the individual model. While both conditional
autoregressive and spatial association models can remove some spatial autocorrelation,
the spatial association approach may not work effectively without further modifying the
existing method.

Key Words: Ambient temperature; Birth weight; Extreme temperature days; Moran’s I ;
Spatial clusters; Weather.

1. INTRODUCTION

Data for individual health outcomes are increasingly restricted due to confidentiality
concerns. If aggregated data could be used without going through requesting, collecting,
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and processing individual data, the efficiency of disease surveillance and the availability
of published data for research would be enhanced significantly (diez Roux 2004). Birth
weight is a key indicator for health outcome surveillance, and aggregated birth weight data
are widely available in the United States, but individual birth weight data that cover large
geographic areas are available for only a small number of metropolitan counties. For the
current study, we obtained early years of individual birth weight data coded at the county
level for the continental United States. We examined the influence of data aggregation on
estimates of trends for climate variables and associated birth weight variables. Ultimately,
we hope to assess how aggregated data might be used for monitoring the effect of climate
change on human health outcomes, but here, we restricted the outcome variable to birth
weight.

The influence of ambient temperature on birth weight has been extensively stud-
ied. Ambient temperature extremes can cause biological and physiological stresses for
pregnant women, and inhibit fatal growth and gestation (Behrman and Butler 2007;
Flouris et al. 2009; Wells and Cole 2002). In a recent review, Strand, Barnett, and Tong
(2011) listed four potential reasons for why low-birth weight and preterm births are like
to be associated with changes in temperature. Supporting evidence was found in many
places worldwide (Flouris et al. 2009; Murray et al. 2000; Strand, Barnett, and Tong 2012;
Yackerson, Piura, and Sheiner 2008), but most notably in Japan, where preterm births
peaked both in summer and winter with the winter peak dominant in the north, and the
summer peak in the South (Matsuda and Kahyo 1990). In addition, many other related
diseases, such as sudden infant death syndrome (Campbell 1994), cardiovascular disease
(Barnett et al. 2005), and infection disease (Fisman 2007), are all associated with geo-
graphic regions, and changes in ambient temperature, suggesting that weather affects peo-
ple through different biological mechanisms in different regions and different seasons.

Since climate change will increase the intensity and frequency of extreme weather (Al-
ley et al. 2003; Meehl et al. 2000), it is likely to adversely affect birth outcomes. Monitoring
the effects of temperature or weather extremes on health is critical for public health pre-
paredness for climate change. However, due to confidentiality concerns, individual data are
unlikely to be released at the county level in the foreseeable future. Therefore, it is neces-
sary to assess whether aggregated data can be used effectively to monitor health outcomes.

Furthermore, even when individual data are available, data processing time and com-
putational resource needs often limit their use for timely health outcome surveillance. For
example, hourly weather data are widely available, but processing hourly weather data
for more than 3000 counties in the United States is daunting. These limitations are espe-
cially true for health studies related to climate change, because climate variations must be
observed over a long period of time and across a wide geographic area. Spatial statisti-
cians interested in climate change and human health want to know whether existing ag-
gregated data analysis of health outcomes produces results that are consistent with indi-
vidual data analysis. In the current study, we compared the relationship between date- and
county-specific individual birth and extreme weather to the relationship between aggre-
gated (1) month-county data, (2) season-county data, and (3) county-only data and cli-
mate variations. A previous study used daily temperature data (Deschénes, Greenston, and
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Guryan 2009), and found that extreme hot weather negatively affected birth weight, and
the authors attributed the effect to in utero exposure primarily during the third trimester.
Based on this finding, Lin and Feng (2011) found that aggregated monthly temperature and
extreme weather frequency data are sufficient to capture the essential finding of Deschénes,
Greenston, and Guryan (2009). Therefore, for the current study, we used individual birth
data and monthly weather data.

Previous studies have examined data aggregation effects. Econometricians and epidemi-
ologists have assessed individual data aggregation effects in terms of data smoothing and
loss in efficiency (Lang and Gottschalk 1996). They suggest that ecological covariates of-
ten play important roles in various grouping effects. Theoretically, results from a linear
regression model based on individual data can be captured at an aggregated level if all
ecological covariates can sufficiently explain individual variation at the given aggregation
level. In contrast to the individual aggregation problem, spatial aggregation studied by ge-
ographers often ranges from small area units, such as census tracts, to large area units, such
as county or city, resulting in the so-called multiple area unit problem or MAUP (Fothering-
ham and Wong 1991). The MAUP suggests that results from one level of aggregation often
cannot be replicated at another level, perhaps due to lack of corresponding covariates. In
the current study, we extend these previous studies by examining both individual-to-spatial
temporal aggregation and spatial temporal-to-pure spatial unit aggregation.

When data are aggregated from individual to some area units, the association between
the original relationship and the aggregated relationship may have an inconsistent direc-
tional effect. This phenomenon is labeled ecological fallacy in epidemiology due to Robin-
son (1950), which is also known as the Simpson Paradox (Simpson 1951). This effect
comes from the disparate relationship between an individual and an aggregated correla-
tion. Individual association is from each individual outcome, while aggregated association
is from mean or other aggregated outcomes. In the case of birth weight and weather, the
individual relationship is between individual birth weight and extreme weather; the aggre-
gated relationship (e.g., from individual to small area units) is between the overall mean
effects of areal unit birth weight and a mean extreme weather measure.

Our task is to identify an aggregation point at which we can reasonably preserve indi-
vidual effects while using aggregated data. We investigate the relationship between birth
weight and extreme weather using multivariate analysis for individuals, and using ecolog-
ical analysis for a group of individuals. In addition, we also used spatial cluster modeling
as an additional method to capture spatial variation that cannot be explained by an ecolog-
ical model. The rest of this article is organized as follows. In Section 2, we introduce data,
data processing procedures, and statistical models. In Section 3, we present the results. In
Section 4, we discuss findings and provide the conclusion.

2. METHOD

2.1. DATA AND DATA PROCESSING

Birth Data We obtained Natality Data Files (NDFs) for 1969 to 1988 from the U.S.
Centers for Disease Control and Prevention (CDC). This data set has wide geographical
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coverage and relatively rich information about women who gave birth. The U.S. NDFs
were formally launched in 1968. States were required to submit individual birth certificate
data to the CDC. The CDC made the data for 1968 to 1988 publicly available, with ge-
ographic resolution at the county level. We processed annual birth data for each year for
50 states and the District of Columbia and combined the data into a single file with 56.5
million birth records. The CDC also released individual birth records after 1988, but only
those counties with a population greater than 100,000 can be identified.

From 1969 to 1973, states submitted different sample sizes to the NDFs, with little
consistency. Therefore, we compared data from 1974 to 1978 to data from 1984 to 1988.
We used the early period to capture extreme weather effects at a time when most people had
relatively few mitigation options, and the later period to capture extreme weather effects at
a time when central air conditioners had become more widely available (Lin et al. 2007).

We restricted our samples to 48 continental states and the District of Columbia in United
States, and created a 20 % random sample file. We also restricted the sample to White or
Caucasian mothers to eliminate race as a potential confounder. We also excluded women
younger than 19 years or older than 38 years, so that the sample follows a nice normal dis-
tribution without having to control age groups in aggregation. In the preliminary analysis,
we attempted to exclude twins or multiple births. However, we eventually decided to in-
clude all births because (1) not all states in the early period had a singleton birth indicator,
and (2) among 2 % multiple births in the 1984–1988 period, 50 % of them had low birth
weight (or <2500 g) which were distributed almost evenly across states and geographic
regions. We opted to provide some evidence in the result section to show the consistency.

Weather Data We used the National Climatic Data Center Summary of the Day Data
(File TD-3200) and associated the population center point for each county with weather
variables at each county location. Since most station data for those years did not include
humidity, we used various combinations of temperature variables. First, we created all
the variables used in (Deschénes, Greenston, and Guryan 2009) which included county’s
daily averages temperature in the following bins: <25 °F, 25–45 °F, 45–65 °F, 65–85 °F,
or >85 °F. We then added additional extreme weather variables, such as daily maximum
>90 °F, >95 °F or a daily minimum <20 °F (see Lin et al. 2007 for some justifications of
temperature variables). In order to control for acclimation effects (becoming accustomed
to a warm or cold climate), we also included the average annual temperature from 1960 to
1969 in each county. Figure 1 shows numbers of days with minimum temperature <20 °F
(Figure 1a) and maximum temperature >90 °F (Figure 1b). In a preliminary analysis, we
used previous month as exposure, and the results were not as strong as the current months
in terms of the goodness of fit statistics.

Other County Level Data We attempted to control some of the known factors. Since
the birth certificates did not include data on birth mother or family income, we used county
per capita income in each year from the U.S. census as a control variable. We also included
the average elevation of a county as it showed a negative effect on birth weight (Jensen
and Moore 1997). In particular, we created two variables: one was an indicator variable
contrasting the average elevation either above or below 1500 meters, and the other was
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Figure 1. Extreme cold (<20 °F) or hot (>90 °F) days: 1974–1978.

simply the average elevation. Both variables were derived from the National Elevation
Data in grid from the U.S. Geological Survey (Lin et al. 2007).

After linking birth data to county-level weather data, we found that Key West, Florida,
had few weather records, and we subsequently excluded this county. We also excluded
some independent cities in Virginia that were either split or combined during the 1970s,
because of lack of corresponding county socioeconomic data. After completely linking
weather data and county income data with individual birth records, we had 2,260,009 and
2,652,552 records in 1974–1978 and 1984–1988, respectively. Since all the data were ob-
tained from our previous studies, we intend to make them available upon the publication
of this paper.

2.2. STUDY DESIGN

Due to the emphasis on evaluating aggregation effects, we attempted to use as parsimo-
nious as possible for the baseline relationship between extreme weather and birth weight.
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We replicated the previous study (Deschénes, Greenston, and Guryan 2009) by using the
same regression framework. We found that the number of days with extreme weather, mea-
sured as either >85 °F average or >90 °F daily maximum were significantly related to
lower birth weight, with the latter being more significant. For this reason, we used daily
maximum and daily minimum temperature measures. Since income data had only 3100
data points each year, we decided to fit a random effect multilevel model.

Let Yi be ith individual birth weight, k(i) be its county index, Li be the number of days
in the birth month with a minimum temperature less than 20 °F, Hi be the number of days
in the birth month with a maximum temperature higher than 90 °F, Tk(i) be the county-level
annual average temperature in the birth year, Ek(i) be the indicator of county-level average
elevation greater than 1500 meters, and Pk(i) be the county-level per capita income in the
birth year. Then, we can fit a multilevel model as:

Yi = β0 + β1Li + β2Hi + β3Tk(i) + β4Ek(i) + β5Pk(i) + Vk(i) + εi, (2.1)

where Vk(i) is the county-level unstructured random effect and εi is the individual-level
random error. We assume Vk(i) ∼i.i.d. N(0, σ 2

V ) and εi ∼i.i.d. N(0, σ 2). This design is anal-
ogous to a recent time-stratified case-crossover study (Basu, Malig, and Ostro 2010). In
the following, we design to examine aggregated effects between birth weight and extreme
weather in an ordinary linear regression that had an identical number of independent vari-
ables, and county units.

Model (2.2) is month-county specific. It aggregates model (2.1) from a 60-month indi-
vidual level to a 12-month county level:

Ȳm,jk = β0 + β1Ljk + β2Hjk + β3Tk + β4Ek + β5Pk + εjk, j = 1, . . . ,12, (2.2)

where Ȳm,jk is the j th month-specific average birth weight for the kth county in the study
period, Ljk is the number of days with a minimum temperature less than 20 °F in the given
month and county, Hjk is the number of days with a maximum temperature higher than
90 °F in the given month and county, Tk is the county-level average annual temperature,
Ek is the indicator of county-level average elevation greater than 1500 meters, Pk is the
county-level per capita income for the kth county, and the error term εjk is i.i.d. N(0, σ 2).

Likewise, Model (2.2) can be specified by aggregating 12 months to 4 seasons (Win-
ter (1)—December to February, Spring (2)—March to May, Summer (3)—June to August,
and Fall (4)—September to November) and generating season-specific average weather
variables at the county level:

Ȳs,jk = β0 + β1Ljk + β2Hjk + β3Tk + β4Ek + β5Pk + εjk, j = 1,2,3,4, (2.3)

where Ȳs,jk is the j th season specific average birth weight for the kth county in the study
period. The remaining variables are defined in the same way as in Model (2.2), and the
error term εjk is also i.i.d. N(0, σ 2).

Finally, Model (2.4) can be specified by dropping the month-specific average in weather
variables in Model (2.2) and aggregating all individuals to their counties of residence:

Ȳk = β0 + β1Lk + β2Hk + β3Tk + β4Ek + β5Pk + εk, εk ∼i.i.d. N
(
0, σ 2), (2.4)
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where Ȳk is the county-level average birth weight in the study period and the remaining
variables are defined in the same way as in Model (2.2). Model (2.4) is the most parsimo-
nious model that combines 60 month-specific weather information into a single number.
As we will see later, doing so may not capture extreme weather patterns.

Since counties in the three aggregated models above may exhibit correlation, it is nec-
essary to test for model residuals at the county level for spatial autocorrelation. If the test
is significant, spatial autocorrelation can be removed in two ways. One common way is to
use an autoregressive term (Anselin 1988), but it only mechanically removes spatial clus-
tering without providing information about local clusters. The other way is to make use of
spatial association terms to identify local clusters, which can then be used to remove its
contribution to autocorrelation in a multiple regression framework (Zhang and Lin 2009).
We used both methods in our assessments.

2.3. SPATIAL AUTOREGRESSIVE MODEL

The conditional autoregressive (CAR) model can incorporate spatial dependence by
specifying a set of spatial adjacent weights (Besag 1974; Haining 1990; Ord 1975). Here
we used the rook weight rule as

wij =
{

1 if counties i and j share a common boundary,
0 otherwise.

(2.5)

In a CAR model, the conditional expected value of the response variable is its mean value
plus a weighted sum of the mean-centered values. We specify a random effect γk for county
k with a CAR model in Models (2.2) and (2.3) such that Model (2.2) is modified as

Ȳm,jk = β0 + β1Ljk + β2Hjk + β3Tk + β4Ek + β5Pk + γk + εjk, j = 1, . . . ,12,(2.6)

and Model (2.3) is modified as

Ȳs,jk = β0 + β1Ljk + β2Hjk + β3Tk + β4Ek + β5Pk + γk + εjk, j = 1,2,3,4,(2.7)

where εjk are i.i.d. N(0, σ 2). In Models (2.6) and (2.7), respectively, γk is a CAR random
effect modeled as

γk|all γl �=k = ρ
∑

l �=k

wklγl + ωk, ωk ∼i.i.d. N
(
0, τ 2)

where ρ and τ 2 are parameters.
Likewise, Model (2.4) is modified as

Ȳk|all Ȳl �=k = μk + ρ
∑

l �=k

wkl(Ȳl − μl) + εk, εk ∼i.i.d. N
(
0, σ 2), (2.8)

where

μk = β0 + β1Lk + β2Hk + β3Tk + β4Ek + β5Pk.

The parameter ρ describes the spatial dependence between counties, in which ρ = 0 indi-
cates spatial independence and the spatial dependence becomes stronger when |ρ| becomes
large. We considered both ρ < 0 and ρ > 0 cases and use the maximum likelihood method
to estimate model parameters in all of Models (2.6), (2.7), and (2.8).
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2.4. SPATIAL ASSOCIATION MODEL

The spatial association model is based on the residual test of Moran’s I in a linear
regression. For a study area with m units, let zi be the value associated with the ith unit.
Moran’s I (Moran 1948) is expressed as:

I = 1

b2S0

m∑

i=1

m∑

j=1

wij (zi − z̄)(zj − z̄) (2.9)

where z̄ = ∑m
i=1 zi/m, S0 = ∑m

i=1
∑

j �=i wij , bk = ∑m
i=1(zi − z̄)k/m, and wij is the spa-

tial weight between units i and j , defined by (2.5).
The p-value of Moran’s I is calculated under the random permutation test scheme if

m is large (Cliff and Ord 1981). Let ER(·) and VR(·) be the expected value and variance
under a random permutation, respectively. Then, Moran’s I is approximately normally
distributed (Sen 1976):

Istd = I − ER(1)√
VR(I)

∼approx N(0,1).

Therefore, the p-value of Moran’s I is calculated according to a two-sided z-test given by
2[1 − 	(Istd)]. A significant and positive value of Moran’s I (i.e., Istd > zα/2) indicates
a positive autocorrelation, while a significant and negative value of Moran’s I indicates a
negative autocorrelation.

It is pointed out that Moran’s I can be alternatively tested by treating zi as the ith unit
residual of a linear regression, and be used to remove local clusters by first identifying
the locations and the number of local clusters, and then adding them as indicator variables
in the regression model (Zhang and Lin 2009). To briefly describe the local association
method, we assume that S is the only spatial cluster in the study area, where a spatial
cluster is defined as a set of spatially connected units with values significantly higher or
lower than the expected. Let ei be the predicted value of the response Yi at the ith unit.
Then, the simplest way to define the cluster S is to assume E(Yi) = ei + δS if i ∈ S and
E(Yi) = ei if i /∈ S so that a spatial cluster model can be formulated as

E(Yi) = ei + δSIi∈S, (2.10)

with δSIi∈S being the spatial associate term. S is a hot spot (denoted by H ) when δ > 0,
and it is a cool spot (denoted by C) when δ < 0. However, S is unknown, and one can
search from a collection of spatial candidates S (Kulldorff 1997), so that the spatial cluster
S can be identified by maximizing the standard t-value from Model (2.10), i.e.,

S = arg max
S′∈S

∣∣∣∣
δ̂S′

σ̂
δ̂S′

∣∣∣∣,

where δ̂S′ is the point estimate and σ̂
δ̂S′ is the standard error of the point estimate of δS′

conditional on a given S′ ∈ S.
With regard to the low birth weight model in (2.2), the local association term δSIi∈S can

be added as

Yi = X′
iβ + δSIi∈S + εi, εi ∼i.i.d. N

(
0, σ 2), (2.11)
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where β is the vector of unknown slopes and δS is the strength of the cluster. The cluster
detection problem under Model (2.11) can be understood by the hypothesis testing problem
as

H0: δS = 0 against H1: δS �= 0. (2.12)

If H0 is accepted, then there is no spatial cluster. If H0 is rejected, it is necessary to search
for clusters.

The search process starts with the test of significance of Moran’s I without the local
association term in Model (2.11). If I is not significant, then it is not necessary to search
for any clusters, and the algorithm stops. If I is significant, then a stepwise procedure is
invoked by fitting the model with the local association term δSIi∈S . Let the first identified
cluster be S1, and suppose there are no greater than J potential local clusters.

Then, after identifying the J − 1 local association terms δS1Ii∈S1, . . . , δSJ−1Ii∈SJ−1 , the
stepwise procedure stops searching when Moran’s I test for an additional cluster SJ is not
significant. Model (2.11) can then expressly include spatial association terms

Yi = X′
iβ + δS1Ii∈S1 + · · · + δSJ

Ii∈SJ
+ εi, ε ∼i.i.d. N

(
0, σ 2), (2.13)

where S1, . . . , SJ are the identified local clusters.
Note that Model (2.13) has three components—ecological covariates, local association

terms and residuals, and the latter two terms can be used iteratively. The local association
term indicates the significance of a potential cluster. The residuals can be used to check
residual clustering effect. In our current evaluation, we restricted the number of identi-
fied clusters to less than seven, because human brain can generally process only five to
seven groups on a map (Slocum et al. 2009). Therefore, in Model (2.13) either the residual
Moran’s I test is not significant or J = 6.

3. RESULTS

We established a baseline relationship by using 20 % random samples with 2,269,009
and 2,652,552 observations from 1974–1978 and 1984–1988, respectively. Table 1 pro-
vides the results from Model (2.1), which is a multilevel model with the random effect
being at the county level. As expected, county per capita income was significantly posi-
tively related to birth weight. County elevation was also significant. In contrast to counties
with an average elevation below 1500 meters, counties above this level were associated
with lower birth weight. Average temperature was also negatively associated with birth
weight: the warmer the average temperature of a county, the lower the birth weight. After
controlling for these effects, we confirmed that birth weight was negatively related to both
extremely cold and extremely hot temperatures.

As mentioned earlier, we estimated data from two periods with an intention to assess
if there was a mitigation effect 10 years later. Our results were mixed. One the one hand,
the number of hot days had a reduced effect, suggesting a mitigation effect. One the other
hand, the effect for the number of cold days was strengthened, suggesting less effective
coping strategies for cold weather. Since these relationships have not been investigated
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Table 1. Baseline birth weight and extreme weather: Model (2.1), where (∗) indicates county level effect.

1974–1978 1984–1988

Term Est. Std. err. Est. Std. err.

Intercept 3383.82 6.395 3469.1 5.090
No. of days <20 °F −0.0761 0.0734 −0.4749 0.0739
No. of days >90 °F −0.7449 0.0802 −0.2927 0.06147
Mean temperature (*) −1.1409 0.3683 −4.7054 0.2594
Elevation >1500 M −182.39 9.2263 −162.88 6.3766
Per capita income (*) −0.0068 0.0005 0.0013 0.0002

σv 159.40 80.12
σ 404.99 324.64
Total obs. 2,269,009 2,652,552

empirically in other studies, we present our findings empirically and will not describe them
comparatively below.

It is also necessary to point out that in the 1984–1988 random sample, there were 57,268
plural births, and excluding them had little effect on those reported from Table 2. The
parameter estimates for the numbers of cold days and hot days were −0.462 (Std. err.
= 0.07207) and −0.2973 (Std. err. = 0.05997), respectively. In addition, all other inde-
pendent variables had almost identified parameter estimates: average temperature −4.7039
(Std. err. = 0.2586), elevation −165.03 (Std. err. = 6.3584), and per capita income 1.631
(Std. err. = 0.227). Given that all the results were consistent with findings from the previ-
ous literature, we next examined to what extent the above relationships can be preserved
by using different aggregations through time.

Table 2 lists results for the pure ecological models based on month-county specific,
season-county specific and county-only aggregate data. Since the results from both 1974–
78 and 1984–88 were similar, we describe only the results from 1974 to 1988. The upper
panel of the table shows that month-county specific aggregated data could preserve es-
sential temperature effects exhibited in the individual model. In addition, all the control
variables were consistent with parameter estimates from Model (2.1). In particular, the
average temperature and per capita income were inversely related to mean birth weight.
High elevation was related to low mean birth weight. Month-specific extreme weather (hot
or cold days) was inversely related to birth weight. The middle panel of the table shows
that the seasonal model preserved most relationships established in Model (2.1), especially
those related to climate, suggesting that season-county specific aggregation might be fea-
sible for studying extreme weather effects. However, there is a caveat, as the effect for the
income variable was reversed, and this result was also not consistent with most empirical
studies of income and birth weight relationship at the individual. Finally, the lower panel
of the table shows the number of extremely hot days (>90 °F) was no longer significant in
the county only aggregation model. Since preserving the established weather relationship
is essential, county-level only aggregation is not effective.

Note that in Table 2, the residual test for all three models showed strong spatial auto-
correlation. We therefore used both the CAR and spatial association models to assess their



500 G. LIN AND T. ZHANG

Table 2. Birth weight and extreme weather: aggregated ecological models, where all the p-values of Moran’s I

are less than 0.0001.

1974–1978 1984–1988

Model Term Est. Std. err. Est. Std. err.

Month-county Intercept 3459 7.394 3456 6.704
(Model (2.2)) No. of days <20 °F −0.0874 0.0317 −0.128 0.0343

No. of days >90 °F −0.0681 0.0346 −0.0745 0.0334
Mean temperature −4.739 −0.2781 −4.859 0.271

Elevation >1500 M −177.2 5.935 −177.2 5.907
Per capita income 0.0051 0.0011 0.0022 0.0004

σ 186.3 184.7
Total obs. 36,131 36,143
Moran’s I 0.1903 0.0047 0.1896 0.0047

Istd 40.42 40.27

Season-county Intercept 3455 8.319 3.453 7.240
(Model (2.3)) No. of days <20 °F −0.0298 0.0129 −0.0509 0.0135

No. of days >90 °F −0.0592 0.0141 −0.0322 0.0127
Mean temperature −3.024 0.3172 −4.876 0.2946

Elevation >1500 M −199.4 6.579 −175.3 6.290
Per capita income −0.0031 0.0009 0.0025 0.0004

σ 120.9 116.0
Total obs. 12,179 12,176
Moran’s I 0.2223 0.0048 0.1883 0.0047

Istd 46.24 39.99

County-only Intercept 3542 15.99 3535 14.36
(Model (2.4)) No. of days <20 °F −0.1003 0.0151 −0.1073 0.0154

No. of days >90 °F 0.0524 0.0129 0.0596 0.0138
Mean temperature −9.978 0.9073 −10.22 0.7543

Elevation >1500 M −159.5 8.067 −155.8 8.144
Per capita income 0.0038 0.0011 0.0023 0.0005

σ 70.48 70.23
Total obs. 3048 3049
Moran’s I 0.1943 0.0047 0.1920 0.0047

Istd 41.27 40.78

impacts on model correction and model consistency. The directional effects for all inde-

pendent variables in Table 2 were preserved in the CAR and spatial association models.

All the values of ρ in CAR models (2.6), (2.7), and (2.8) show positive effects (Ta-

ble 3), suggesting that they could absorb significant spatially structured autocorrelations

from the three aggregated models in Table 2. While all spatial association models were

able to identify spatial clusters, they had modest effects on reducing spatial autocorrela-

tions from Table 2. To save space here, we present only the month-county specific aggre-

gation or Model (2.2). The standard Moran’s I were 40.57 and 40.71 for 1974–1978 and

1984–1988, respectively. Again, due to similar results for the two periods, here we briefly

describe them for only 1984–1988 (Table 4).
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Table 3. Birth weight and extreme weather: aggregated CAR models.

1974–1978 1984–1988

Model Term Est. Std. err. Std. Std. err.

Month-county Intercept 3437 19.07 3425 20.45
(Model (2.6)) No. of days <20 °F −0.0737 0.0497 −0.0591 0.0545

No. of days >90 °F −0.1626 0.0562 −0.962 0.0518
Mean temperature −3.0846 0.8818 −3.3103 1.0357

Elevation >1500 M −125.3 16.13 −107.5 19.00
Per capita income 0.0051 0.0026 0.0026 0.0009

σ 181.8 179.5
τ 39.76 52.05
ρ 0.1085 0.1050

Season-county Intercept 3438 12.81 3430 13.11
(Model (2.7)) No. of days <20 °F −0.0167 0.0119 −0.0336 0.0126

No. of DAYS >90 °F −0.0760 0.0133 −0.0451 0.0120
Mean temperature −2.2813 0.5643 −3.5413 0.6998

Elevation >1500 M −140.7 10.68 −94.28 11.09
Per capita income −0.0024 0.0014 0.0027 0.0006

σ 109.1 106.2
τ 39.04 28.90
ρ 0.1081 0.1357

County-only Intercept 3510 19.46 3500 17.79
(Model (2.8)) No. of days <20 °F −0.0743 0.0190 −0.0732 0.0194

No. of days >90 °F 0.0394 0.0181 0.0513 0.0188
Mean temperature −8.0875 1.0112 −8.2734 0.9633

Elevation >1500 M −121.4 10.81 −122.3 10.77
Per capita income 0.0039 0.0013 0.0024 0.0006

σ 64.21 64.12
ρ 0.0954 0.0944

First, the process of searching for spatial associations identified six clusters, and the

inclusion of these association terms did not affect significant and directional effects of the

ecological covariates. This result suggests that ecological covariates and spatial autocorre-

lation captured different spatial effects, and spatial association terms were not correlated

with temperature or other effects. Second, among the six clusters, three were spatially con-

nected albeit not overlapping. It suggests that (1) the circular cluster shape may not be

sufficient for cluster detection in a large area with thousands of area units, and (2) non-

overlapping spatial association terms may not be sufficient, as overlapping units can cap-

ture different geometric shapes and cluster slope (Lin 2003). Third, after the sixth spatial

association term was entered, the residual spatial autocorrelation was still very strong with

the p-value for Moran’s I being less than 0.0001. It suggests that even though the search

algorithm can go on with additional spatial association terms, processing a large number

of clusters may not be useful in practice. Finally, for the six identified clusters, four were

cool spots, and two were hot spots, which reveal additional information.
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Table 4. Month-county specific spatial association models, where all the p-values of Moran’s I are less than
0.0001.

1974–1978 1984–1988

Term Est. Std. Est. Std.

Intercept 3430 7.941 3415 7.489
No. of days <20 °F −0.0750 0.0315 −0.1090 0.0341
No. of days >90 °F −0.0878 0.0347 −0.0783 0.0333
Mean temperature −2.937 0.3156 −1.846 0.3178
Elevation >1500 M −109.9 6.437 −105.7 6.517
Per capita income 0.0058 0.0011 0.0023 0.0004
δ1 −83.48 4.345 −83.87 4.233
δ2 59.40 3.856 62.70 3.889
δ3 −55.45 5.179 57.94 7.063
δ4 −29.15 3.505 −53.19 6.112
δ5 54.79 7.106 −32.34 3.457
δ6 37.33 5.082 −60.69 7.268

σ 183.8 183.8
Moran’s I 0.0591 0.0047 0.0620 0.0047
Istd 12.50 13.12

Figure 2. Spatial associations of cool (C) and hot (H) spots for Model (2.2) (1984–1988).

Figure 2 displays the six spatial cool and hot spots in mean birth weight data by county
for 1984–1988. The figure shows a general geographic tendency toward a low mean birth
weight from north to south, with some regional patterns. Minnesota, Wisconsin, and Iowa
had severe winter storms during this period, but the storms tended to be associated with
high birth weight. This general or average effect was captured by the hot spot spatial as-
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sociation in the upper Midwest. A swath of the Mountain region, however, had a relatively
low mean birth weight. The main reason for this regional effect was elevation, as the region
sits on the mountainous areas in the Mountain region, where weather is likely to be more
volatile. Findings for this region and the Southwest region (e.g., Oklahoma, Arkansas, and
Texas) suggest both relative hot temperatures and more extreme weather events. While
these effects were partially captured by the elevation term used in the model, the month-
county specific model cannot fully account for these effects. As a result, residual clus-
ters from the whole Mountain region were captured by three cool spot clusters. Finally,
there were two separated clusters, a hot spot in Washington State, and a cool spot in West
Virginia extending to Virginia, where the low mean birth weight could be sufficiently ex-
plained by extreme weather and low per capita income.

4. DISCUSSION

Since Robinson’s seminal work on ecological fallacy in the 1950s, epidemiological
studies have gradually shifted toward using individual survey and experimental data. Using
individual data with an experimental design or case matching is now considered the gold
standard. However, most public health data are still released at an aggregated level, such
as county, census tract, or ZIP Code. In order to meet the needs of climate change and
human health data requirements, we have provided a series of aggregation analysis of birth
weight and its relationship with two extreme weather measures (<20 °F or >90 °F) con-
trolling for average county temperature, per capita income, and high elevation counties. To
provide meaningful aggregation, we restricted the sample to White birth mothers aged 19
to 38 years. At the individual level, extreme temperatures were negatively associated with
birth weight: the more hot days and cold days, the lower the birth weight. These results
are consistent with results from a previous study using the same data set [5], which also
reinforced findings from other studies.

Our empirical regression assessments showed a range of results according to the study
design. On the one hand, aggregating individuals into month-county specific groups tended
to preserve the established relationship at the individual level. In most cases, spatial au-
tocorrelation exists, but accounting for spatial association terms would not change the
directional effects of ecological covariates. On the other hand, county-only aggregation
destroyed the established weather-birth weight relationship, and the result became incon-
sistent with the one from individual model. Between the two, the season-county specific
model worked fine in weather-related relationships, but showed some inconsistency in the
income relationship. While income was used as a control variable, its effects become re-
versed during the aggregation process, suggesting the existence of the Simpson paradox
for the income variable. We speculate that the birth rate of high income families is usually
much lower than that of low income families, and the aggregation ignores difference in
the spatial distribution of high or low income families. After aggregation, the contribution
by difference birth rates among different counties weighted equally, which in turn, might
cause the reversed income effect, or the ecological fallacy.
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Our evaluations of the CAR model and the spatial association model had mixed results.
While both models had little effect on climate variables, they provided different interpre-
tations. All CAR models suggest a strong spatial-random effect of clustering, while all
spatial association models can identify specific clusters that may worth looking into later
on. In contrast to removing an overall autocorrelation effect of |ρ| in the CAR model, each
association term in the spatial association model had only an incremental effect on remov-
ing spatial autocorrelation. There could be several reasons for this result. First, the circular
cluster shape may not be sufficient for cluster detection in a large area with thousands of
area units, as it may force many candidates into the cluster that should not be included.
Second, the assumption and design of non-overlapping spatial association terms may not
be sufficient. For example, if two cool spots are overlapping, the overlapping area is even
more negative to the main effect. Third, for ease of cluster interpretation or etiological dis-
covery, we stopped after detecting the sixth cluster. Additional iterations may or may not
explain the residual patterns that were captured by spatial autocorrelation. While any of
the reasons above could lead to a separate study, together, they also suggest the limitation
of a spatial association model for modeling a large number of spatial units.

In addition to the above limitation of the spatial association modeling approach, this
study has several other limitations. First, hourly humidity measures are not available for
most counties. We therefore could not generate the heat index, which combines tempera-
ture and humidity. Like most studies, our exposure variables were based on birth month,
which may not be as good as 6 days prior to birth shown in Basu, Malig, and Ostro (2010).
However, it has its advantage of avoiding costly daily temperature data collection and com-
pilation. Second, we did not have enough geographical or ecological variables. Key air pol-
lutants, such as PM2.5, were related to low birth weight (Bell, Ebisu, and Belanger 2007),
but data on PM2.5 at the county level only became available after 1998. Spatial associa-
tions may capture some effects from missing ecological covariates, but other relationships
between weather and birth weight could not be recovered without additional ecological
covariates. Third, for regions with distinct weather and socioeconomic patterns, separate
analyses are warranted. For instance, the low-birth weight region that covers Wyoming,
Colorado, and New Mexico seems relate to a set of factors that include elevation, maintain
weather and access to care. One approach that might be fruitful is spatially weighted re-
gression that provides local parameter estimates. Fourth, there might be state-level effects
due to different regulations, which we did not include in our spatial multilevel regression,
but which might be the reason why Washington State is a hot spot cluster. Finally, we did
not experiment with spatial aggregation. For some counties with small population sizes,
aggregating a number of adjacent counties with similar climate and weather variables may
still preserve the essential relationship. Again, some of these limitations point to future
research directions.

Although our primary interest was assessing aggregation effect, the substantive re-
sults are worth noting. Early studies about birth weight and temperature or seasonal-
ity tended to be based on a single location. Preterm births and perinatal deaths were
found to be higher in July and August in Minnesota. Babies born in the summer had
the lowest birth weights in New York State (Selvin and Janerich 1971), and preterm
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labors were higher in winter and summer in New York City (Lajinian et al. 1997). Our
results were based on data from across the continental U.S. in different time periods,
and it added credence to other studies. We used temperature as a control variable, but
the result showed a gradient of birth weight from cold to warm temperature zone; the
warmer the temperature, the lower the birth weight. This result is consistent with the
finding from a multi-county meta-data analysis that showed a north-to-south gradient of
heavier to lower birth weights (Wells and Cole 2002). Early studies tended to imply ex-
treme weather effect through seasonality. Our study explicitly use extreme weather in-
dicators, and showed that controlling for temperature, the number of cold or hot days
in the birth month was negatively associated with birth weight, which can be captured
at the individual and aggregated (e.g., month-year or season-year) level. In addition, we
also found that elevation can significantly modify birth weight. Controlling for area in-
come, those living in relatively high altitude tend to have lower birth weights, a result
consistent with previous studies in Colorado, U.S. and Bolivia (Jensen and Moore 1997;
Giussani et al. 2001). Our study provided supporting and generalizable evidence to other
single site studies.

In conclusion, temporal aggregation by month-county or season-county is likely to pre-
serve the relationship between birth weight and extreme weather in the individual model. If
health outcome measures cannot be released at the individual level, they should be released
at the month-county specific level for weather-related public health research. The spatial
association approach for removing spatial autocorrelation may not work without further
modifying the existing method.
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