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Online Multiple Learning with Working Sufficient
Statistics for Generalized Linear Models in Big
Data∗

Tonglin Zhang†,‡, and Baijian Yang§

The article proposes an online multiple learning approach
to generalized linear models (GLMs) in big data. The ap-
proach relies on a new concept called working sufficient
statistics (WSS), formulated under traditional iteratively
reweighted least squares (IRWLS) for maximum likelihood
of GLMs. Because the algorithm needs to access the entire
data set multiple times, it is impossible to directly apply
traditional IRWLS to big data. To overcome the difficulty, a
new approach, called one-step IRWLS, is proposed under the
framework of the online setting. The work investigates two
methods. The first only uses the current data to formulate
the objective function. The second also uses the information
of the previous data. The simulation studies show that the
results given by the second method can be as precise and
accurate as those given by the exact maximum likelihood. A
nice property is that one-step IRWLS successfully avoids the
memory and computational efficiency barriers caused by the
volume of big data. As the size of the WSS does not vary
with the sample size, the proposed approach can be used
even if the size of big data is much higher than the memory
size of the computing system.
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1. INTRODUCTION

Recently, rapid advances in science and technology have
brought unprecedented opportunities and challenges to
tackle much larger and more complicated data in academics
and industry. Due to the situation that data are recorded
everyday, sizes of big data can be as high as thousands of
petabytes, leading to a large volume and a wide variety of
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data that have to be treated carefully online before integra-
tion into a system. Because of volume and variety issues, it
is more efficient to study a number of models together rather
than a single model when data are accessed. The goal of the
article is to develop such an approach.

The development of statistical approaches for big data
under the online setting is more challenging than that under
the offline setting. In many situations, massive data arrive
in streams or large chunks, leading to the need of online ap-
proaches. An online approach provides updating results se-
quentially without storage requirements of previous results.
Rather than an offline approach, it cannot simultaneously
access the entire data even once. It can only use the current
data and a set of summary information for the previous
data. The size of the summary information must be lower
than the memory size of the computing system. An updated
set of summary information is derived after the current data
and the previous summary information are combined. Its
size cannot be significantly inflated by the combination. Es-
timates of model parameters and their variance-covariance
matrix can be only computed by the set of summary infor-
mation.

Our work fulfills recent research topics on big data, which
has gained remarkable attention in both academic and in-
dustry. Because of the memory and computational efficiency
barriers, the implementation of traditional approaches is
impossible. Many approaches have been developed. Exam-
ples include the sampling-based [8, 16], the divide-and-
conquer [7], the divide-and-recombine [6], the sequential up-
dating [3], the online updating [12, 15], and the scanning
data by rows [18, 19, 20, 22]. In the case when the size of big
data is higher than the memory size of a personal computer,
the computation is often distributed across multiple proces-
sors such that the entire job can be finished in a reasonable
amount of time [10]. Following this line, the MapReduce [2]
and Spark [17] frameworks have been widely adopted. Their
main interest is to approximately compute maximum like-
lihood estimates (MLEs) of model parameters in a given
statistical model. If another model is considered, then the
entire approach must be used again. Since the access of a
big data set is time-consuming, it is inefficient to study in-
dividual models separately, leading to the need of multiple
learning approaches.



The construction of summary information is important in
statistical approaches for big data under the online setting.
This issue has been previously studied under the framework
of linear models for normal data [18, 19]. The basic technique
is the usage of a set of sufficient statistics (SS), which is
given by the matrix of the cross product of variables involved
in the linear model. The MLEs of model parameters and
their standard errors can be exactly derived by the matrix
of the cross product. Because the size of the matrix does
not depend on the sample size, the method can be used
even if the sample size is extremely large. The matrix of the
cross product can be easily updated if new observations are
collected, implying that it can also be used under the online
setting. More importantly, the method can be used to study
a number of models simultaneously as one can purposely
construct the matrix for all the related models.

We extend the idea of SS from linear models to GLMs.
An obvious difficulty is that the size of SS in a GLM for non-
normal data is often identical or close to the size of the ob-
served data. We cannot use SS to reduce the memory needed
in the computation. To overcome the difficulty, we study
traditional iteratively reweighted least squares (IRWLS) for
MLEs of GLMs [5]. We develop (online) one-step IRWLS by
a new concept called working sufficient statistics (WSS). We
note that traditional IRWLS is the standard fitting method
for MLEs of GLMs, which has been adopted by many
software packages, such as R, SAS, Python, and MatLab.
Traditional IRWLS uses the weighted least squares (WLS)
method under a working weighted linear model (WWLM)
in each iteration. As the WWLM is a linear model for nor-
mal data, the IRWLS successfully changes the computation
from nonnormal data to normal data. Then, we derive our
one-step IRWLS.

We investigate two kinds of implementations. The first
kind of implementations is divide-and-conquer. It does not
use any information of previous data in the construction
of the objective function for the current data. The second
kind of implementations is online updating. It uses the infor-
mation of previous data in the construction. The difference
between the two kinds of implementations only affects the
construction of the working response vector and the work-
ing weights in the WWLM. The rest steps are identical. We
find that the second kind of implementations provides more
reliable results than the first.

The primary difference between SS and WSS is that the
derivation of SS only needs the likelihood function, but the
derivation of WSS also needs numerical algorithms. The dif-
ficulty caused by the size of big data can be overcome by
using the concept of WSS. In the case when the size of data
is lower than the memory size of a personal computer, we
compare our approach with traditional IRWLS. We apply
one-step IRWLS to GLMs for binomial big data with the
logistic link and Poisson data with the log link. We find
that the results given by one-step IRWLS are close to those
given by traditional IRWLS. We also apply our approach to

the case when the size of data exceeds the memory size of
a personal computer, where traditional IRWLS cannot be
applied. Similar to the SS approach for linear models, our
approach can also be used to study a number of models si-
multaneously. Therefore, we classify it as an online multiple
learning approach for GLMs in big data.

The article is organized as follows. In Section 2, we pro-
vide a brief review of traditional IRWLS for small or moder-
ate data. In Section 3, we present our approach. In Section 4,
we specify our approach to three well-known statistical mod-
els. In Section 5, we evaluate our proposed approach using
Monte Carlo simulations. In Section 6, we apply our ap-
proach to a real data example. In Section 7, we provide a
discussion.

2. TRADITIONAL IRWLS

Traditional IRWLS is a standard fitting method for
GLMs which has been adopted by many software packages.
It can provide exact MLEs of GLMs with arbitrary links.
Traditional IRWLS is an iterative method. It computes the
MLE of a WWLM for normal data in each of its iterations.
The weight and response values of the WWLM are updated
iteratively. The exact MLE is derived if the algorithm con-
verges.

GLMs are defined on exponential family distributions [1,
Chapter 4]. The purpose is to model expected values of a
response variable via a number of explanatory variables.
Three components are needed to define a GLM. The random
component consists of a response vector y = (y1, . . . , yn)

⊤,
where y1, . . . , yn are independently obtained from an expo-
nential family distribution, and n is the sample size. An
exponential family distribution has a probability mass func-
tion (PMF) or a probability density function (PDF) as

(1) f(yi) = exp

[
yiωi − b(ωi)

a(ϕ)
+ c(yi, ϕ)

]
,

where ωi is a canonical parameter representing the location,
and ϕ is a dispersion parameter representing the scale. The
linear component η = (η1, . . . , ηn)

⊤ is a vector related to
explanatory variables by ηi = x⊤

i β for all i ∈ {1, . . . , n},
where xi = (1, xi1, . . . , xi(p−1))

⊤ is the ith observed vector

of explanatory variables, and β = (β0, β1, . . . , βp−1)
⊤is a

vector of regression coefficients. The link function g(·) con-
nects µi = E(yi) = b′(ωi) and ηi through

(2) ηi = g(µi) = g[b′(ωi)] = x⊤
i β

for all i ∈ {1, . . . , n}. The variance of the response is given
by V(yi) = a(ϕ)b′′(ωi). The variance function of the model
is v(µ) = b′′{h−1[g(µ)]}, where ωi = h(x⊤

i β) is the inverse
function obtained by (2). If the canonical link is used, then
(2) reduces to ηi = ωi = g(µi) = x⊤

i β, implying that h(·) is
the identity function.
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The MLEs of β, denoted by β̂, must be solved numeri-
cally if the distribution is not normal. A popular and well ac-
cepted method is traditional IRWLS [5]. It is modified from
the Fisher scoring method, and is identical to the Newton-
Raphson method under the canonical link.

Let µ(r) = (µ
(r)
1 , . . . , µ

(r)
n )⊤ and X = (x⊤

1 , . . . ,x
⊤
n )

⊤,

where µ
(r)
i = g−1(η

(r)
i ), η

(r)
i = x⊤

i β
(r), and β(r) is the rth

iterated value of β̂. Let

(3) w(η) = (∂µ/∂η)2/b′′[h(η)]

and

(4) u(η) = η + (y − µ)(∂η/∂µ)

be functions of η, where y, µ, and η are the general no-
tations of the response, the expected value, and the lin-
ear component given by (1) and (2), respectively. Then,

W(r) = diag(w
(r)
1 , . . . , w

(r)
n ) with w

(r)
i = w(η

(r)
i ) is the

working weight matrix and u(r) = (u
(r)
1 , . . . , u

(r)
n )⊤ with

u
(r)
i = u(η

(r)
i ) is the working response vector given by tradi-

tional IRWLS. The Fisher-scoring method updates the so-
lution of β̂ by (X⊤W(r)X)β(r+1) = X⊤W(r)u(r). Equiva-
lently, β(r+1) is the MLE of the WWLM given by

(5) u(r) = Xβ + ϵ,

where ϵ ∼ N (0, σ2{W(r)}−1), and σ2 = a(ϕ). Traditional

IRWLS provides the final solution of β̂ with initial u(0)

and W(0). The ith components of u(0) and W(0) may be

taken as the conventional choices u
(c)
i = u(c)(yi) = g(yi)

and w
(c)
i = w(c)(yi) = {[g′(yi)]2b′′[h(u(c)i )]}−1, respectively,

leading to u(0) = u(c) and W(0) = W(c) in many software

packages. The formulations of u
(c)
i and w

(c)
i are often modi-

fied if g(yi) is not well-defined. In general, u(0) and W(0) are
not necessary to be identical to u(c) and W(c), respectively.
The implementation of IRWLS can be flexible. After β̂ is
derived, a straightforward method to estimate ϕ is given by
moment estimation [9] as

(6) a(ϕ̂) =
1

n

n∑
i=1

(yi − µ̂i)
2

b′′[h(x⊤
i β̂)]

,

where µ̂i = b′[h(x⊤
i β̂)]. If ϕ is not present in (1), then (6) is

not needed. This occurs in Bernoulli, binomial, and Poisson
models.

3. APPROACH

We present our approach in this section. The basic ver-
sion of (online) one-step IRWLS is introduced in Section
3.1. The extended online updating version is introduced in
Section 3.2. A framework for online parallel computation
is developed in Section 3.3. The asymptotic properties of
our approach are studied in Section 3.4. A multiple learning
framework is proposed in Section 3.5. An offline extension
is displayed in Section 3.6.

3.1 One-Step IRWLS

The aim of one-step IRWLS is to overcome the diffi-
culty caused by the volume of big data under the online
setting. It assumes that an online learning system receives
data in a data stream. The system sequentially receives
blocks (or trunks) of data denoted by Dt = {(yt,Xt)} for
all t ∈ {1, . . . , T}, where T is the current time, t with
t < T represents the previous times, yt = (yt1, . . . , ytnt)

⊤

is the response vector, Xt = (x⊤
t1, . . . ,x

⊤
tnt

)⊤ with xti =
(1, xti1, . . . , xti(p−1))

⊤ is the design matrix, and nt is the

sample size at time t. The total sample size is n =
∑T

t=1 nt.

Then, DT+ =
∪T

t=1 Dt is the set of the entire data, and
D(T−1)+ is the set of previous data.

We assume that yti is independently observed from (1)
with the relationship between yti and xti given by (2), for
all i ∈ {1, . . . , nt} and t ∈ {1, . . . , T}. Under the online set-
ting, the system can use DT but not Dt for any t < T . In-
stead, it can use a set of summary information for D(T−1)+.
An updated set of summary information is derived by com-
bining the information of DT with the set of the summary
information for D(T−1)+. The size of the set of summary
information cannot be significantly inflated as T increases.
Otherwise, the computation will be out-of-memory quickly.

If yti is normally distributed, then the GLM becomes a
linear model. A set of summary information can be straight-
forwardly constructed by the cross product of the response
and explanatory variables, which is equivalent to the set of
SS in the model. It can be easily updated by combining the
information in DT with the set of SS for the previous data.
We will revisit this problem in Section 4.1.

If the distribution of yti is not normal, then the size of
SS is often identical to (or slightly lower than) the size of
the entire data. It is impossible to use the method of SS
to define the set of summary information. We recommend
using working sufficient statistics (WSS).

We find that the traditional IRWLS given by (5) can
be specified with the working response and weight values.
Once they are derived, (5) becomes a weighted linear model

(WLM). The computation of the next iterated value of β̂
only needs the matrix of the cross product in the WLM,
which provides the definition of WSS. The usage of WSS
can provide the exact answer of the next iterated value of
β̂. As the entire data set is accessed multiple times, this
method cannot be used under the online setting.

We propose one-step IRWLS to overcome the difficulty.
The approach only needs initial values of the working re-
sponse and the working weight vectors. The idea is to con-
struct a WLM for the MLE of the GLM, leading to a normal
approach to nonnormal data. As the solution provided by
the approach is not the exact MLE, it is important to inves-
tigate its theoretical properties. This issue will be discussed
in Section 3.4.

One-step IRWLS starts with initial u
(0)
t =

(u
(0)
t1 , . . . , u

(0)
tnt

)⊤ and W
(0)
t = diag(w

(0)
t1 , . . . , w

(0)
tnt

), which
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depend on Dt+ only, for all t ∈ {1, . . . , T}. They may not

be identical to u
(c)
t and W

(t)
t , the conventional choices used

by many software packages. The WWLM given by (5) at t
becomes

(7) u
(0)
t = Xtβ + ϵt,

where ϵt ∼ind N (0, σ2{W(0)
t }−1) for all t ∈ {1, . . . , T}. Be-

cause (7) is basically a normal model, we can use properties
of normal likelihood to study computational issues.

We express the set of WSS as an unstructured array,
which is developed under the loglikelihood function of (7)
as

(8) ℓ(0)(β, σ2) =
T∑

t=1

ℓ
(0)
t (β, σ2),

where

(9)

ℓ
(0)
t (β, σ2) =− nt

2
[log(2π) + log σ2]− 1

2

nt∑
i=1

logw
(0)
ti

− 1

2σ2

nt∑
i=1

w
(0)
ti (u

(0)
ti − x⊤

tiβ)
2

is the loglikelihood function of β and σ2 of (7) in Dt. By

the standard method, we can show that {s(0)t , s
(0)
t ,S

(0)
t }

with s
(0)
t =

∑nt

i=1 w
(0)
ti {u(0)ti }2, s(0)t =

∑nt

i=1 w
(0)
ti u

(0)
ti xti, and

S
(0)
t =

∑nt

i=1 w
(0)
ti xtix

⊤
ti is a set of SS of (7) in Dt. We express

those by an unstructured array as

(10) S(0)
t = (s

(0)
t , s

(0)
t ,S

(0)
t ),

such that

(11) S(0)
T+ =

T∑
t=1

S(0)
t = (s

(0)
T+, s

(0)
T+,S

(0)
T+)

with s
(0)
T+ =

∑T
t=1 s

(0)
t , s

(0)
T+ =

∑T
t=1 s

(0)
t , and S

(0)
T+ =∑T

t=1 S
(0)
t is an unstructured array of SS of (7) in DT+.

Then, S(0)
t and S(0)

T+ are the unstructured arrays of WSS for
the GLM given by (1) and (2) in Dt and DT+, respectively.

In both S(0)
t and S(0)

T+, the first component is a numer-
ical value, the second component is a p-dimensional vec-
tor, and the third component is a p× p-dimensional matrix.
Their sizes are identical and do not vary with n. Given that

S(0)
(T−1)+ is derived, we can use it to compute S(0)

T , leading

to an updating equation as

(12) S(0)
T+ = S(0)

(T−1)+ + S(0)
T .

Therefore, S(0)
T+ can be updated sequentially, indicating that

it can be used as the set of summary information under the
online setting.

One-step IRWLS uses S(0)
T+ to fit (7). The result can be

directly obtained by traditional WLS. The one-step IRWLS
estimator of β is

(13) β̂one = β̂one,T = {S(0)
T+}

−1s
(0)
T+

with the variance-covariance matrix as

(14) V̂(β̂one) = σ̂2
one{S

(0)
T+}

−1,

where

(15) σ̂2
one =

1

n

(
s
(0)
T+ − {s(0)T+}

⊤{S(0)
T+}

−1s
(0)
T+

)
is the MSE of the model. We can derive all of those by S(0)

T+

only. We use the Wald statistic zj = β̂one,j/σ̂β̂one,j
to test

significance of βj for all j ∈ {1, . . . , p−1}, where β̂one,j is the
jth component of β̂one given by (13), σ̂β̂one,j

is its standard

error given by (14), and the p-value of zj is calculated by
the standard normal distribution.

Definition 3.1. Let u
(0)
ti and w

(0)
ti be constructed by Dt+

only with t ∈ {1, . . . , T}. The loglikelihood functions given
by (8) and (9) are called the working loglikelihood functions
of (7) in Dt and DT+, respectively. The arrays of sufficient
statistics given by (10) and (11) are called the unstructured
arrays of working sufficient statistics (WSS) of (7) in Dt

and DT+, respectively. The (online) one-step IRWLS up-
dates the unstructured array of WSS by (12) as T increases.
It uses (13), (14), and (15) to approximately calculate the
MLE of β and the estimate of its variance-covariance matrix
in the GLM defined by (1) and (2), respectively.

There are two kinds of implementations. The first is
divide-and-conquer (D&C), called one-step IRWLS under
D&C. It does not use any information of previous data in the
construction of the working response and the work weight
vectors. We introduce it in the following of this subsection.
The second is online updating (UPD), called one-step IR-
WLS under UPD. It uses the information of previous data.
We will introduce it in the next subsection.

We provide two estimators under the framework of D&C.
The first estimator is derived by directly following the con-

ventional method, which chooses u
(0)
t = u

(c)
t and W

(0)
t =

W
(c)
t in Definition 3.1. The rest steps are exactly identical

to (13), (14), and (15). The results are denoted by β̂con,

V̂(β̂con), and σ̂2
con, respectively. We call this the conven-

tional version of one-step IRWLS.
The second estimator is derived by using the individ-

ual MLEs of β in Dt, denoted by β̂t, in the construction

of µ
(0)
t and W

(0)
t . Following traditional IRWLS, we have

u
(0)
ti = u(η̂ti) and w

(0)
ti = w(η̂ti), where η̂ti = x⊤

tiβ̂t, for

i ∈ {1, . . . , nt}. Then, u(0)
t = Xtβ̂t + (yt − µ̂t)(∂η̂t/∂µ̂t)

and W
(0)
t = diag{(∂µ̂t/∂η̂t)

2/b′′[h(η̂t)]}. The results given
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by (13), (14), and (15) are denoted by β̂mle, V̂(β̂mle), and
σ̂2
mle, respectively. We call this the MLE version of one-step

IRWLS.
We next investigate the relationship between the MLE

version of one-step IRWLS and the aggregated estimating
equation (AEE) method proposed by [7]. Let

(16) ℓt,ϕ(β) =

nt∑
i=1

{
c(yti, ϕ) +

ytih(x
⊤
tiβ)− b[h(x⊤

tiβ)]

a(ϕ)

}
be the true loglikelihood function of the model based on Dt.
Let ℓ̇t,ϕ(β) be its gradient vector and ℓ̈t,ϕ(β) be its Hessian

matrix with respect to β. The jth component of ℓ̇t,ϕ(β) is

(17)
∂ℓt,ϕ(β)

∂βj
=

1

a(ϕ)

nt∑
i=1

xtij(yti − µti)

b′′[h(ηti)]

∂µti

∂ηti
,

for all j ∈ {0, . . . , p− 1}. The (j1, j2)th entry of ℓ̈t,ϕ(β) is

(18)

∂2ℓt,ϕ(β)

∂βj1∂βj2
=

1

a(ϕ)

nt∑
i=1

{(yti − µti)h
′′(ηti)

− b′′[h(ηti)][h
′(ηti)]

2}xtij1xtij2 ,

for all j1, j2 ∈ {0, . . . , p− 1}. The estimating function for β

in Dt is ℓ̇t,ϕ(β) = 0 and the solution is β̂t. Let

(19) At = −a(ϕ)ℓ̈t,ϕ(β̂t)

for all t ∈ {1, . . . , T}. The Taylor expansion of −a(ϕ)ℓ̇t,ϕ(β)
at β̂t is −a(ϕ)ℓ̇t,ϕ(β) = At(β − β̂t) + Rt, where Rt is a
remainder. The AEE estimator of β for the entire data set
is formulated under the D&C framework, which combines
individual estimators as

(20) β̂aee =

(
T∑

t=1

At

)−1 T∑
t=1

Atβ̂t.

It is a solution to
∑T

t=1 At(β − β̂t) = 0.

Theorem 3.1. If g is the canonical link in (2), then β̂mle =

β̂aee.

Proof: If g is the canonical link, then h(·) is
the identical function and ∂µti/∂ηti = b′′(η̂ti),

u
(0)
ti = x⊤

tiβ̂t + (yti − µ̂ti)/b
′′(η̂ti), w

(0)
ti = b′′(η̂ti), and

−a(ϕ)∂2ℓt,ϕ(β)/(∂βj1∂βj2) =
∑nt

i=1 b
′′(ηti)xtij1xtij2 .

Then, S
(0)
t =

∑nt

i=1 w
(0)
ti xtix

⊤
ti = X⊤W

(0)
t Xt. By

taking ηti = η̂ti and µti = µ̂ti in (17), we have

X⊤
t W

(0)
t u

(0)
t = X⊤

t W
(0)
t Xtβ̂t + ℓ̇t,ϕ(β̂t). By ℓ̇t,ϕ(β̂t) = 0,

we have s
(0)
t = X⊤

t W
(0)
t Xβ̂t. Thus, S

(0)
T+ =

∑T
t=1 At and

s
(0)
T+ =

∑T
t=1 Atβ̂t, implying the conclusion.

Corollary 3.1. If we modify (19) as At = At(β̂t) with

At(β) = E[−a(ϕ)ℓ̈t,ϕ(β)], then β̂mle = β̂aee.

Proof: If g is the canonical link in (2), then ℓ̈t,ϕ(β) =

E[ℓ̈t,ϕ(β)] and we draw the conclusion by Theorem 3.1. For
any other links, using the same method in the proof of The-

orem 3.1, we can also show S
(0)
t =

∑T
t=1 X

⊤
t W

(0)
t Xt and

s
(0)
T+ =

∑T
t=1 Atβ̂t. We draw the conclusion.

Corollary 3.2. If w
(0)
ti = (yti − µ̂ti)h

′′(η̂ti) −
(∂µ̂ti/∂η̂ti)

2/b′′[h(η̂ti)] is used in the computation of

β̂mle, then β̂mle = β̂aee.

Proof: The conclusion can be similarly shown by the
method of Corollary 3.1.

We have proposed the conventional and MLE versions of
one-step IRWLS under the framework of D&C. We show
that the MLE version is equivalent to AEE if the canonical
link is used in (2). With slight modifications, they can also
be equivalent to each other under other links. A concern
in the implementation of β̂mle and β̂aee is their existence.
This can be caused by rank deficiency problems in Xt for
some t ∈ {1, . . . , T} [12]. This usually does not occur in the
conventional version of one-step IRWLS.

3.2 Online Updating

Under the online setting, all S(0)
t for t ∈ {1, . . . , T − 1}

have been derived before the construction of the current ST ,
leading to our one-step IRWLS under UPD. In this method,

we use S(T−1)+ in the construction u
(0)
T and W

(0)
T . We then

use (12) to compute ST+. This can be sequentially imple-
mented under the online setting by increasing T .

By the combination of the working loglikelihood function
for the previous data and the true loglikelihood function
for the current data, we obtain an updating loglikelihood
function as

(21) ℓupd(β, σ
2) =

T−1∑
t=1

ℓ
(0)
t (β, σ2) + ℓT,ϕ(β),

where the first term is given by (9) and the second term is
given by (16). We estimate β by

(22) β̌ = argmax
β

{ℓupd(β, σ2)}.

An iterative algorithm for (22) is obtained by the idea
of traditional IRWLS. In particular, let β̌(r) be the rth it-
erated value of β̌. Then, the rth working response vector

is ǔ(r) = (ǔ
(r)
1 , . . . , ǔ

(r)
nT )

⊤ and the rth working weight ma-

trix is W̌(r) = diag(w̌
(r)
1 , . . . , w̌

(r)
nT ), where ǔ

(r)
i = u(η̌

(r)
i ),

w̌
(r)
i = w(η̌

(r)
i ), and η̌

(r)
i = x⊤

Tiβ̌
(r). Let ℓ̌(r)(β, σ2) be the

loglikelihood function of (5) after X and W(r) are replaced
by XT and W̌(r), respectively. Then, ℓ̌(r)(β, σ2) is the rth
working loglikelihood function of ℓT,ϕ(β). The next iterated
value of β̌ is

(23) β̌(r+1) = argmax
β

{
T−1∑
t=1

ℓ
(0)
t (β, σ2) + ℓ̌(r)(β, σ2)

}
.
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It provides the final β̌ if the algorithm converges. We gen-
erally express ǔ = (ǔ1, . . . , ǔnT

)⊤ as the working response
vector and W̌ = diag(w̌1, . . . , w̌nT ) as the working weighted

matrix in the computation of S(0)
T in one-step IRWLS under

UPD, where ǔi = u(η̌i), w̌i = w(η̌i), and η̌i = x⊤
Tiβ̌. The

result given by (13) is denoted by β̌upd.
We also modify β̌upd. We use β̌(r) for a selected r but

not the final solution given by (23) to approximate ℓT,ϕ(β).
Because the result given by (13) depends on β̌(0), we can
propose many modifications. Here, we only introduce two.
In the first, we choose β̌ = β̂con when T = 1. We call this
the simplified version. We denote the result given by (13)
as β̌sim,t if the method is applied until Dt or β̌sim if it is
applied to all t ∈ {1, . . . , T}. Thus, we have β̌sim = β̌sim,T .

In the second, we choose β̌(0) = β̂T in (23). If T = 1, then

β̌ = β̂1 because β̂1, the MLE of β for data in D1, is a max-
imizer of the likelihood function; otherwise, we need (23).

We denote the result given by (13) as β̌
(r)
mle if we treat the

rth iterated value given by (23) as the final solution of β̌.

Then, β̌
(0)
mle = β̂aee if g is the canonical link.

We compare our β̌
(r)
mle with the estimator given by the cu-

mulatively updated estimating equation (CUEE) approach
proposed by [12]. The CUEE estimator of β is obtained by
the Taylor expansion of −a(ϕ)ℓ̇T,ϕ(β) at

(24) β̃nT ,T = (ÃT−1+AT )
−1

(
T−1∑
t=1

Ãnt,tβ̃nt,t +AT β̂T

)
,

where Ã0 = 0, β̃0 = 0, Ãt =
∑t

i=1 Ãni,i, and Ãnt,t =

−a(ϕ)ℓ̈t,ϕ(β̃nt,t). Note that (24) provides the current β̃nT ,T

based on previous β̃nt,t for all t ∈ {1, . . . , T−1}. We assume

that β̃nt,T given by (24) is implemented by increasing T
from 1 to the current time in a data stream, such that we
have all the previous β̃nt,t. Then, (24) provides the current

β̃nT ,T value. The CUEE estimator of β is

(25)
β̌cuee =

{
T−1∑
t=1

Ãnt,t + ÃnT ,T

}−1

[aT−1

+ ÃnT ,T β̃nT ,T + bT−1 + a(ϕ)ℓ̇T,ϕ(β̃nT ,T )],

where aT = aT−1 + ÃnT ,T β̃nT ,T , bT = bT−1 +

a(ϕ)ℓ̇T,ϕ(β̃nT ,T ), a0 = b0 = 0p, and Ã0 = 0p×p.

Theorem 3.2. If g is the canonical link, or g is not the
canonical link but we use the modification given by Corol-

lary 3.1 or 3.2, then β̌
(1)
mle = β̌cuee.

Proof: The conclusion can be similarly proven by the
method in the proofs of Theorem 3.1, and Corollary 3.1
and 3.2. The detail is omitted.

We summarize the five estimators obtained in Sec-
tions (3.6) and (3.2) in Table (1). Among those, two are
developed under D&C and three are developed under UPD.

Table 1. Five estimators given by one-step IRWLS under
divide-and-conquer (D&C) and online updating (UPD), where

u(c)(y) = g(y), w(c)(y) = {[g′(y)]2b′′[h(g(y))]}−1, β̂t is the

MLE of β in Dt, and β̌
(r)
t and β̌t are the solutions of β given

by (23) for a selected r and by (22), respectively, when UPD
is applied from D1 to Dt.

t = 1 t > 1

D&C β̂con u
(0)
ti u(c)(yti) u(c)(yti)

w
(0)
ti w(c)(yti) w(c)(yti)

β̂aee u
(0)
ti u(x⊤

tiβ̂t) u(x⊤
tiβ̂t)

w
(0)
ti w(x⊤

tiβ̂t) w(x⊤
tiβ̂t)

UPD β̌sim u
(0)
ti u(c)(yti) u(x⊤

tiβ̌sim,t−1)

w
(0)
ti w(c)(yti) w(x⊤

tiβ̌sim,t−1)

β̌cuee u
(0)
ti u(x⊤

tiβ̂t) u(x⊤
tiβ̌

(1)
t )

w
(0)
ti w(x⊤

tiβ̂t) w(x⊤
tiβ̌

(1)
t )

β̌upd u
(0)
ti u(x⊤

tiβ̂t) u(x⊤
tiβ̌t)

w
(0)
ti w(x⊤

tiβ̂t) w(x⊤
tiβ̌t)

Under D&C, the mathematical formulations for the working
response and the working weight vectors in all Dt are iden-
tical, but not under UPD. As previous information is used,
we expected that UPD can provide better estimators than
D&C. This is confirmed in our simulation studies.

3.3 Online Parallel Computation

The major issue in one-step IRWLS is the computation

of S(0)
T+ by (12). This can be easily implemented if DT is not

large in size. An online parallel computation framework is
needed only when DT is also large in size.

Suppose that DT is large and has been partitioned into
K subsets. Let DTk = {(yTk,XTk)} be the kth subset, such
that DT can be obtained by yT = (y⊤

T1, . . . ,y
⊤
TK)⊤ and

XT = (X⊤
T1, . . . ,X

⊤
TK)⊤. The online parallel computation

calculates S
(0)
Tk = (s

(0)
Tk, s

(0)
Tk,S

(0)
Tk) for all k ∈ {1, . . . ,K} in-

dividually, where s
(0)
Tk, s

(0)
Tk, and S

(0)
Tk are defined similarly

as those given by (10). Then, it derives S(0)
T by S(0)

T =∑K
k=1 S

(0)
Tk . Once S(0)

T is available, the task of online par-
allel computation is over.

We have two scenarios to implement online parallel com-
putation. In the first, we do not need any previous infor-

mation in the computation of S(0)
T . It is used in the imple-

mentation of β̂con, β̂aee(i.e., β̂mle) by the methods given
by Section 3.1. The corresponding results are not affected
by the choices of DTk. In the second, we need to use the
previous information. It occurs in the computation of β̌sim,
β̌upd, and β̌cuee. We need to modify (21) and (22) for STk

for each k ∈ {1, . . . ,K}. The corresponding results are af-
fected by the choices of DTk. The method can be developed
under the D&C framework.

The major difference between offline and online parallel
computation is that offline parallel computation can use the
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entire data but online parallel computation cannot. Online
parallel computation is not needed if the entire data set is
large but the current data set is not. The previous data set
cannot be accessed by online parallel computation. It can
only be given by a set of summary information.

3.4 Asymptotics

All modifications of β̂one and σ̂
2
one given by (13) and (15)

can be treated as M-estimators of β and σ2, respectively.
Thus, the asymptotic properties of the one-step IRWLS can
be evaluated by the traditional M-estimation approach. We
study this issue under a broader context. It includes all of
the estimators discussed in Sections 3.1 and 3.2.

We focus on the asymptotic properties of the quadratic
form given by the last term of (9), which can be generally
expressed as

(26) Q(β) =
1

2n

n∑
i=1

wi(ui − x⊤
i β)

2,

where wi = w(yi,xi) and ui = u(yi,xi), and w(·, ·) and
u(·, ·) are smooth functions. Let

(27) β̃ = argmin
β

Q(β).

Here, β̃ could be one of β̂con, β̂aee (i.e., β̂mle), β̌sim, β̌cuee

(i.e., β̌
(1)
mle), or β̌upd in our asymptotic studies, depending

the choices of w(·, ·) and u(·, ·) in (26). Let

(28) q(β) = Eβ0 [Q(β)]

and

(29) β∗ = argmin
β

q(β),

where β0 = (1, β01, . . . , β0(p−1))
⊤ is the true parameter vec-

tor. By the traditional M-estimation approach, we can show

that β̃
P→ β∗ as n → ∞. Moreover, we can also derive the

asymptotic normality. Since β∗ and β0 may be different, we
need to evaluate their relationship.

Based on traditional regularity conditions for consistency
and asymptotic normality of the maximum likelihood and
M-estimation approaches, we propose our regularity condi-
tions as follows.

Regularity conditions:

(C1) (yi,x
⊤
i )

⊤ are iid copies of (y,x⊤)⊤ for all i ∈ {1, . . . , n},
and the distribution of (y,x⊤)⊤ does not vary with n.

(C2) w(·, ·) is always positive.
(C3) The domain of β in (26) is compact, and β0 and β∗ are

the interior points.
(C4) w(·, ·) and u(·, ·) are third-order continuous, and the

third-order partial derivative operators can be passed
under the integral sign in the expected value operators.

(C5) There exists a continuous function ψ(y,x) such that
Eβ[ψ(y,x)] <∞ and w(y,x)[u(y,x)−x⊤β]2 < ψ(y,x)
for all y, x, and β.

(C6) For any β and sufficiently small ρ > 0,
sup|β′−β|<ρ w(y,x)[u(y,x) − x⊤β]2 is measurable
in y and x.

(C7) supβ |Q(β)− q(β)| a.s→ 0.

(C8) w(y,x)[u(y,x) − x⊤β]2 = w(y,x)[u(y,x) − x⊤β′]2 for
all y and x if and only if β = β′.

(C9) There exist continuous functions ψ1(y,x) and ψ2(y,x)
such that Eβ0 [ψ1(y,x)] < ∞, Eβ0 [ψ2(y,x)] < ∞, each
component of the gradient vector of w(y,x)[u(y,x) −
x⊤β]2 is bounded in absolute value by ψ1(y,x),
and each component of the Hessian matrix of
w(y,x)[u(y,x) − x⊤β]2 is bounded in absolute value
by ψ2(y,x).

(C10) Neither Bβ0 = Eβ0 [w(y,x)xx
⊤] nor Aβ0(β) =

Eβ0{w2(y,x)[u(y,x)− x⊤β]2xx⊤} is singular.

Condition (C1) indicates that the asymptotic properties
are studied under the iid case, such that we can directly
use the traditional proofs for consistency of M-estimation.
Condition (C2) is required as Q(β) must be the objective
function given by the WLS approach. Conditions (C3)–(C8)
are modified from the standard conditions for consistency of
maximum likelihood [4, Chapter 16] and M-estimation [13,
Chapter 5]. Condition (C9) is proposed for the asymptotic
normality, which has been previously used for asymptotic
normality of maximum likelihood [4, Chapter 17]. Condition
(C10), which has been previously used by [21], ensures that
the variance-covariance matrix in the asymptotic normality
is not singular.

Lemma 3.1. If (C1)–(C8) hold, then β̃
a.s.→ β∗.

Proof. We draw the conclusion by the standard proof for
consistency of M-estimation; see the proof of Theorem 5.7
in [13] or Theorem 17 in [4] for details.

Lemma 3.2. If (C1)–(C10) hold, then
√
n(β̃ − β∗) ⇝

N [0,B−1
β0

Aβ0(β
∗)B−1

β0
], where ⇝ means converges in dis-

tribution.

Proof. The asymptotic normality can be shown by the
standard methods for the asymptotic normality of M-
estimation; see the proof of Theorem 5.21 in [13]. The
variance-covariance matrix in the asymptotic normality can
be directly derived by the standard formulation.

Lemma 3.3. Let β∗
J and xJ be sub-vectors of β∗ and

x chosen from lags in β∗ and x indexed by J for any
J ⊆ {1, . . . , p − 1}, respectively. Suppose that (C1)–
(C8) hold. Then, β∗

J = 0 if and only if there exists a
function C(x), which does not depend on xJ , such that
Eβ0 [w

1/2(y,x)u(y,x)|xJ ] = C(x)Eβ0 [w
1/2(y,x)x⊤β|xJ ].

Proof. Based on the properties of E[Q(β|xJ ],
we find that Eβ0{w(y,x)[u(y,x) − x⊤β]2|xJ} and
Eβ0{Eβ0 [w

1/2(y,x)u(y,x)|xJ ] − Eβ0 [w
1/2(y,x)x⊤β|xJ ]}2
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are minimized at the same function of xJ , implying the
conclusion.

Lemma 3.4. Assume that (C1)–(C8) are satisfied. Let β0J

with the first component for the intercept and the rest compo-
nents be the vector composed by those in β0 with lags indexed
by J ⊆ {1, . . . , p−1}. Then, (a) β∗

J = 0 if β0J = 0, and (b)
β∗
J ̸= 0 if Eβ0 [w

1/2(y,x)u(y,x)|xJ ]/Eβ0 [w
1/2(y,x)x⊤β|xJ ]

always varies with xJ when β0J ̸= 0.

Proof. The conclusion can be implied by Lemma 3.3.

Theorem 3.3. Let w(y,x) and u(y,x) be
those given by Definition 3.1, respectively.
Suppose that (C1)–(C10) hold. Assume that
Eβ0 [w

1/2(y,x)u(y,x)|xJ ]/Eβ0 [w
1/2(y,x)x⊤β|xJ ] always

varies with xJ for any J ⊆ {1, . . . , p− 1} when β0J ̸= 0. If
β0j = 0, then zj ⇝ N (0, τ2j ), where τ

2
j is a positive constant

which is determined by Lemma 3.2 and (14). If β0j ̸= 0,
then limn→∞ P (|z0j | < C) = 0 for any C ∈ R+.

Proof: By Lemma 3.2, we conclude that
√
n(β̂one,j−β∗

j )⇝
N (0, τ2j ), where β∗

j is the jth component of β∗, and τ2j
is the jth diagonal element of B−1

β0
Aβ0(β

∗)B−1
β0

divided

by the jth diagonal element of nV̂(β̂one). By the Strong

Law of Large Number (SLLN), we conclude nV̂(β̂one)
a.s.→

n−1Eβ0(S
(0)
T+) = Eβ0 [w

1/2(y,x)xx⊤]. Then β∗
j = 0 if and

only if βj0 = 0 by Lemma 3.4, and the conclusion is
drawn.

Corollary 3.3. Assume that all conditions of Theorem 3.3
hold. If w(y,x)[u(y,x)−x⊤β∗]2 and w(y,x)xx⊤ are uncor-
related, then τ2j = 1.

Proof: Note that σ̂2
one

P→ Eβ0{w(y,x)[u(y,x) − x⊤β∗]2}
and Aβ0(β

∗) = Bβ0Eβ0{w(y,x)[u(y,x)−x⊤β]2} under the
condition of the corollary. Then, we draw the conclusion by
combining this with (14).

Theorem 3.3 points out that the Wald test based on zj
given by (13) and (14) is consistent. Corollary 3.3 points
out that it is appropriate to use the standard normal dis-
tribution to calculate the p-value of zj under the condi-
tion. If the condition is violated but the correlation between
w(y,x)[u(y,x) − x⊤β∗]2 and w(y,x)xx⊤ is small, then we
can still approximately use the method to calculate the p-
value of zj . Because β∗ may be different from β0, the es-
timators given by one-step IRWLS may be biased, but it
can still provide significance in the model. This is used in
finding the optimal model, indicating that main properties
of GLMs can be identified.

3.5 Multiple Learning

Multiple learning has more advantages than individual
learning since it can provide results of a number of statistical
models simultaneously. As the optimal model is unknown,
a number of candidate models must be investigated. The
usage of an individual learning procedure is inefficient as it

can only provide results of a single statistical model by one
access of data. If another model is considered, then the entire
procedure must be used again, leading to another access of
the data. The framework of individual learning procedures
has been extensively adopted by many statistical software
packages. Examples include all of packages in R and SAS.
To fit a candidate model, the data command in R and SAS
must be included to indicate the name of the data set to be
accessed. This is not a concern if the size of data is small,
but it is a serious problem in big data as the access of the
entire data set is time-consuming.

A multiple learning procedure can be straightforwardly
proposed by (21). Note that the second term is the true log-
likelihood function for the current data. It can vary with
respect to our interest. For the first term, when a number of
GLMs are involved, we can purposely construct xi in (11)
such that it includes all of the explanatory variables. Then,
the combination of the two terms can be used to study all

of the related models. After S(0)
T+ is derived, we can remove

the redundant elements and obtain the corresponding WSS
for each candidate model. It can provide the solutions to
the model without an access of the data. A similar idea can
be found in criterion-based variable selection procedures for
regression models [14]. Our method can extend this idea to
GLMs. Based on WSS, we can test significance of parame-
ters and identify the optimal model by traditional multiple
testing methods (e.g., by the Bonferroni method). We can
also carry out a backward or forward selection procedure.

Since only summations are used in the computation of

S(0)
T+, the multiple learning procedure can be applied even

if rank deficiency is present. We may face a situation that

rank deficiency is present in S(0)
t given by (10) occasionally

for some t but never in S(0)
T+ given by (11). Thus, we do

not need to account for rank deficiency in our approach.
On the other hand, even if the rank deficiency problem is
always present, it can be overcome by using the generalized
inverse, such as the Moore-Penrose pseudoinverse, in matrix
computation. Since we only need to provide predicted values
for the linear components, the rank deficiency problem does
not affect the computation of the WSS.

3.6 Offline Extension

We can extend our approach to the offline setting. We
assume that the observed data set is massive, such that we
can only load portion of the data to memory. Rather than an
online approach, the offline approach can access the entire
data multiple times by trunks, leading to the possibility for
the exact MLEs.

Following traditional IRWLS, we treat (5) as the WWLM
given by the rth iteration, and derive a working loglikelihood
function for normal data. Then, we obtain an unstructured
array of WSS for the rth iteration. It is used to calculate the
next iterated value of the MLE. The memory needed in the
entire computation does not depend on n, indicating that
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the offline extension can be implemented even if the size of
the data is extremely large.

Suppose that the entire data set D = {(y,X)} has
been partitioned into K subsets Dk = {(yk,Xk)} for all
k ∈ {1, . . . ,K}, such that we have y = (y⊤

1 , . . . ,y
⊤
K)⊤ and

X = (X⊤
1 , . . . ,X

⊤
K)⊤ for the entire data. Let u

(r)
k and W

(r)
k

be the working response vector and the working weight ma-

trix given by Dk. If β
(r) is available, then u

(r)
k and W

(r)
k

can be derived by Dk only. Let S(r)
k = (s

(r)
k , s

(r)
k ,S

(r)
k ) and

S(r) =
∑K

k=1 S
(r)
k , where sk = {u(r)}⊤W(r)u(r), s

(r)
k =

X⊤
k W

(r)u(r), and S
(r)
k = X⊤

k W
(r)Xk. Then, S(r)

k and S
are the sets of WSS in Dk and D given by the rth iteration,
respectively. They are used to compute β(r+1), the next it-
erated value of β̂, by a method similar to that given by (13),
implying that the entire IRWLS can be applied. Meanwhile,
we also compute the Fisher information of β(r+1) by a
method similar to (14). The offline extension can provide

exact solutions of β̂ as well as its variance-covariance ma-
trix. Since it needs to access the entire data multiple times,
the method cannot be applied to the online setting.

4. SPECIFICATION

We specify our approach to three typical GLMs. The first
is linear models for normal data, where the unstructured
array of WSS given by (11) becomes an unstructured array
of SS, leading to an exact online approach to big data re-
gression. The second is binomial regression. It includes the
logistic, probit, and cloglog models for binomial or Bernoulli
data. We focus on the logistic model because of its popu-
larity. The third is Poisson regression. It is carried out by
loglinear models for Poisson data. Because the dispersion
parameter ϕ is not present in binomial and Poisson models,
we propose an adjustment of our one-step IRLWS, such that
we always have σ̂2

one = 1 in our approach. This is consistent
with the assumptions of binomial and Poisson models.

4.1 Regression

We specify our approach to the WLM given by

(30) yti = x⊤
tiβ + ϵti,

for all t ∈ {1, . . . , T} and i ∈ {1, . . . , nt}, where ϵti ∼
N (0, σ2/wti) independently, and wti is known. It is derived
by assuming that f(yti) given by (1) is a normal density with
known variance ratios. Without the usage of any transfor-

mation, we choose u
(0)
ti = yti and w

(0)
ti = wti. The WWLM

in our approach is identical to the WLM given by (30).
The unstructured array of SS in Dt is St = (st, st,ST ),

where st =
∑nt

i=1 wtiy
2
ti, st =

∑nt

i=1 wtiytixti, and St =∑nt

i=1 wtixtix
⊤
ti . The unstructured array of SS in DT+ is

ST+ =
∑T

t=1 St. The exact value of β̂ and its variance-
covarinace matrix can be derived by (13), (14), and (15),
respectively.

For asymptotic properties, we assume that wti are con-
stants, xti are identically and independently derived, and
the conditional distribution of yti given xti is given by
(30). Then, we have β∗ = β0 in (29). Condition (C10) be-

comes Aβ0
(β) =

∑T
t=1

∑nt

i=1 Eβ0
[w2

ti(yti − x⊤
tiβ)

2xtix
⊤
ti ]/n

and Bβ0
=
∑T

t=1

∑nt

i=1 Eβ0
(wtixtix

⊤
ti)/n, respectively. Be-

cause Eβ0(w
1/2
ti yti|xti) = Eβ0(w

1/2x⊤
tiβ|xti) = wtix

⊤
tiβ, the

conclusion of Lemma 3.3 holds. Because residuals and es-
timators are independent, Conditions of Theorem 3.3 and
Corollary 3.3 hold. Theorem 3.3 and Corollary 3.3 are eqil-
valent to the properties of the Wald statistic. This is be-
cause zj follows the t-distribution, which converges to the
standard normal distribution as n→ ∞.

We may also use a location-scale transformation on yti to

define the working response, leading to u
(0)
ti = (yti − δ1)/δ2

and w
(0)
ti = wti for some δ1 ∈ R and δ2 ∈ R+. If this is

adopted, then β∗ given by (29) is not identical to β0. This
is an important issue to be addressed when our approach is
applied to binomial and Poisson data.

4.2 Binomial

The logistic linear model for binomial data assumes that
yti ∼ B(mti, πti) independently with

(31) log
πti

1− πti
= x⊤

tiβ

for all t ∈ {1, . . . , T} and i ∈ {1, . . . , nt}, where mti ∈ N
and πti ∈ (0, 1). By traditional IRWLS, we obtain u

(c)
ti =

log[(yti+0.5)/(mti−yyi+1)] and w
(c)
ti = mti(yti+0.5)(mti−

yyi+0.5)/(mti+1)2. The WWLM is derived by putting these
into (7), leading to the conventional version of one-step IR-
WLS. Since σ2 = a(ϕ) = 1, we propose an adjustment of our

approach by β̂σ̂ = β̂con/σ̂con with the variance-covariance

matrix given by V̂(β̂σ̂) = {S(0)
T+}−1.

In the MLE version of one-step IRWLS, we choose w
(0)
ti =

mtiπ̂ti(1 − π̂ti) and u
(0)
ti = η̂ti + (yti − mtiπ̂ti)/w

(0)
ti with

π
(0)
ti = eη̂ti/(1 + eη̂ti) and ηti = x⊤

tiβ̂t for all t ∈ {1, . . . , T}
and i ∈ {1, . . . , nt}. We still compute the working loglikeli-

hood function ℓ(0)(β, σ2) by (8). Then, we calculate β̂mle,

which is also β̂aee, by maximizing ℓ(0)(β, σ2). To compute
ℓupd(β, σ

2), we replace the second term on the right-hand
side of (21) by

(32) ℓT (β) =

nT∑
i=1

[yTix
⊤
Tiβ −mTi log(1 + ex

⊤
Tiβ)] + C,

where C =
∑nT

i=1 log
(
mTi

yTi

)
. The second term on the right-

hand side of (23) is

(33) ℓ̌(r)(β) = −1

2
(ǔ(r) −XTβ)

⊤W̌(r)(ǔ(r) −XTβ) + C,

where C = −(1/2)[nT log(2π) +
∑nT

i=1 log w̌i]. Obvious, we

have β̌
(1)
mle = β̌cuee.
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4.3 Poisson

In the loglinear model for Poisson data, we assume that
yti ∼ P(µti) independently with

(34) logµti = x⊤
tiβ

for all t ∈ {1, . . . , T} and i ∈ {1, . . . , nt}. We follow

traditional IRWLS and choose u
(c)
ti = log(yti + 0.5) and

w
(c)
ti = yti + 0.5. It provides the conventional version of

one-step IRWLS. Note that σ2 = a(ϕ) = 1 holds. We can

also define β̂σ̂. In the MLE version of one-step IRWLS, we

choose u
(0)
ti = w

(0)
ti = ex

⊤
tiβ̂t . By maximizing ℓ(0)(β, σ2) given

by (8), we obtain β̂mle, which is also β̂aee. The second term
in ℓupd(β, σ

2) given by (21) is

(35) ℓT (β, σ
2) =

nT∑
i=1

log(yTi!) +

nT∑
i=1

(yTix
⊤
tiβ − ex

⊤
Tiβ).

We can apply (23). Further, we also have β̌
(1)
mle = β̌cuee.

5. SIMULATION

We evaluated the advantage of our approach via simu-
lations. All of the simulations were carried out by a third
generation Intel core-i7 2.8GHz processor with 16GB DDR
3 memory. We evaluated the performance of our approach
based on a single processor. We studied the binomial and
Poisson models. We found that conclusions for the Poisson
model were similar to those for the binomial model. There-
fore, we decided to only display our results for the binomial
model.

5.1 Comparison with Traditional IRWLS

We compared our approach with the traditional IRWLS
approach in the logistic linear model for binomial data. To
ensure that the traditional IRWLS approach could be ap-
plied, we assumed that the size of the data was not large,
such that the entire data set could always be loaded to mem-
ory of a personal computer. We compared the precision of
seven estimators. They are β̂con, β̂σ̂, β̂aee, β̌sim, β̌cuee, β̌upd,

and β̂. The computation of β̂ was carried out by glm in R.
We assumed that the entire data set contained p −

1 = 20 explanatory variables, such that we had β =
(β0, β1, . . . , β20)

⊤ and xti = (1, xti1, . . . , xti20)
⊤ in (31). We

chose mti = 1 for all t ∈ {1, . . . , T} and i ∈ {1, . . . , nt},
such that the binomial model became a Bernoulli model.
We assumed that nt were all equal to n0, such that the to-
tal number of observations was n = Tn0. We generated all of
the explanatory variables independently from N (0, 1). We
only set the coefficients for the first and second explanatory
variables nonzero, such that we had βj,0 ̸= 0 if and only
if j = 1, 2, where β0 = (β0,0, β1,0, . . . , β20,0)

⊤ was the true
parameter vector. The true model was

(36) log
πti

1− πti
= xti1β1,0 + xti2β2,0.

We evaluated the performance of the seven estimators
based on 1000 simulation replications from (36). In each
replication, we first generated β1,0 and β2,0 independently
from U(a, 2a) and then generated yti independently from
B(1, πti) with πti given by (36). We calculated the mean
square errors (MSEs) of the seven estimators in each repli-
cation. The MSE was defined by ∥β̃−β0∥2 with β̃ to be one
of the seven estimators. We compared the averages of these
MSE values based on these replications (Table 2). Our re-

sults indicated that the performance of β̂σ̂ was better than
that of β̂con. We investigated the reason and found that the
usage of a location-scale transformation on u(0) in (7) could
significantly affect the MSE values. Note that the dispersion
parameter was not present. This problem could be partially
overcome by the adjustment of σ̂, which was given by β̂σ̂.
The MSE values of β̂aee were lower than those given by
β̂con and β̂σ̂, indicating that the usage of individual MLE
of trunks improved the precision. The MSE values of β̌sim,
β̌cuee, β̌upd, and β̂ were all close, indicating that the results
given by online updating could be as precise as those given
by the exact MLE. The difference between implementation
methods of online updating can be ignored.

We next studied the multiple learning problems that we
have presented in Section 3.5. We treated the model with
all of the explanatory variables as a full model, and studied
a number of reduced models. A reduced models was derived
by removing a few explanatory variables from the full model.
We investigated significance of explanatory variables in all of
the reduced models. We kept all of the significant variables
and removed all of the insignificant variables. As multiple
explanatory variables were involved, we adjusted the mul-
tiple testing problems with the 0.01 significant level by the
Bonferroni method. The final model was derived by remov-
ing all of the insignificant variables. We compared the final
models with the true models given by the seven estimators
by calculating the percentage of correctly identified models
(Table 3), where we classified the final model as a correct
model if it only contained nonzero coefficients of the true
model. We found that the final models were almost identical
to the true model when the strength of parameters became
large. The difference between the seven methods could be
ignored.

In summary, we find that parameter estimates given by
one-step IRWLS can be significantly different from the true
parameter, because they may be affected by the usage of
the location-scale transformation on the working response
values. This can be overcome by incorporating an estimate
of the dispersion parameter in the WWLM. Significance of
explanatory variables can be correctly identified by any of
β̂con, β̂σ̂, β̂aee, β̌sim, β̌cuee, and β̌upd. The usage of previous
data information in one-step IRWLS significantly enhances
precision of the results, which may be as precise as those
given by the exactly MLE given by traditional IRWLS based
on the entire data.
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Table 2. Root MSE and absolute bias of β̂con, β̂σ̂, β̂aee,
β̌sim,β̌cuee, β̌upd, and β̂ for selected n0(×102), T (×10), and

a based on 1000 replications from (36).

MSE

(n0, T, a) β̂con β̂σ̂ β̂aee β̌sim β̌cuee β̌upd β̂

(1, 1, 0.2) 0.258 0.350 0.262 0.296 0.300 0.300 0.309
(1, 1, 0.4) 0.484 0.350 0.317 0.308 0.317 0.317 0.328
(1, 2, 0.2) 0.235 0.246 0.195 0.209 0.211 0.210 0.214
(1, 2, 0.4) 0.471 0.247 0.266 0.220 0.223 0.223 0.227
(1, 5, 0.2) 0.217 0.163 0.143 0.134 0.134 0.134 0.135
(1, 5, 0.4) 0.464 0.163 0.232 0.141 0.142 0.142 0.143
(1, 10, 0.2) 0.211 0.119 0.121 0.093 0.093 0.093 0.094
(1, 10, 0.4) 0.465 0.123 0.222 0.100 0.100 0.100 0.101
(2, 1, 0.2) 0.232 0.246 0.196 0.206 0.210 0.210 0.213
(2, 1, 0.4) 0.469 0.247 0.219 0.220 0.222 0.222 0.226
(2, 2, 0.2) 0.219 0.176 0.140 0.146 0.147 0.147 0.148
(2, 2, 0.4) 0.464 0.179 0.169 0.157 0.157 0.157 0.159
(2, 5, 0.2) 0.212 0.120 0.095 0.093 0.093 0.093 0.094
(2, 5, 0.4) 0.460 0.121 0.131 0.099 0.098 0.098 0.099
(2, 10, 0.2) 0.208 0.093 0.075 0.066 0.066 0.066 0.066
(2, 10, 0.4) 0.460 0.095 0.117 0.070 0.070 0.070 0.070
(5, 1, 0.2) 0.217 0.160 0.128 0.129 0.131 0.131 0.133
(5, 1, 0.4) 0.464 0.163 0.140 0.147 0.141 0.141 0.142
(5, 2, 0.2) 0.211 0.120 0.092 0.093 0.093 0.093 0.094
(5, 2, 0.4) 0.461 0.122 0.103 0.103 0.100 0.100 0.100
(5, 5, 0.2) 0.209 0.088 0.060 0.059 0.060 0.060 0.060
(5, 5, 0.4) 0.460 0.089 0.072 0.064 0.063 0.063 0.063
(5, 10, 0.2) 0.207 0.074 0.044 0.042 0.042 0.042 0.042
(5, 10, 0.4) 0.458 0.076 0.058 0.045 0.044 0.044 0.044
(10, 1, 0.2) 0.211 0.121 0.093 0.094 0.094 0.094 0.095
(10, 1, 0.4) 0.459 0.122 0.099 0.112 0.099 0.099 0.100
(10, 2, 0.2) 0.209 0.094 0.065 0.066 0.066 0.066 0.066
(10, 2, 0.4) 0.462 0.095 0.071 0.076 0.070 0.070 0.070
(10, 5, 0.2) 0.208 0.073 0.042 0.042 0.042 0.042 0.042
(10, 5, 0.4) 0.462 0.076 0.048 0.046 0.044 0.044 0.045
(10, 10, 0.2) 0.205 0.065 0.031 0.030 0.030 0.030 0.030
(10, 10, 0.4) 0.455 0.068 0.037 0.032 0.031 0.031 0.031

Bias

(n0, T, a) β̂con β̂σ̂ β̂aee β̌sim β̌cuee β̌upd β̂

(1, 1, 0.2) 0.200 0.063 0.262 0.017 0.010 0.010 0.015
(1, 1, 0.4) 0.450 0.071 0.317 0.058 0.017 0.018 0.025
(1, 2, 0.2) 0.203 0.056 0.195 0.014 0.010 0.011 0.008
(1, 2, 0.4) 0.450 0.060 0.266 0.037 0.017 0.018 0.010
(1, 5, 0.2) 0.202 0.057 0.143 0.006 0.005 0.005 0.005
(1, 5, 0.4) 0.449 0.060 0.232 0.017 0.009 0.010 0.005
(1, 10, 0.2) 0.201 0.055 0.121 0.005 0.005 0.005 0.003
(1, 10, 0.4) 0.452 0.059 0.222 0.010 0.006 0.006 0.004
(2, 1, 0.2) 0.200 0.059 0.196 0.018 0.007 0.007 0.009
(2, 1, 0.4) 0.447 0.064 0.219 0.060 0.011 0.011 0.012
(2, 2, 0.2) 0.201 0.055 0.140 0.012 0.006 0.006 0.005
(2, 2, 0.4) 0.448 0.061 0.169 0.033 0.008 0.009 0.006
(2, 5, 0.2) 0.202 0.056 0.095 0.005 0.004 0.004 0.004
(2, 5, 0.4) 0.448 0.059 0.131 0.015 0.006 0.006 0.004
(2, 10, 0.2) 0.201 0.055 0.075 0.003 0.002 0.002 0.002
(2, 10, 0.4) 0.449 0.059 0.117 0.009 0.004 0.004 0.002
(5, 1, 0.2) 0.202 0.057 0.128 0.018 0.004 0.004 0.005
(5, 1, 0.4) 0.449 0.061 0.140 0.059 0.004 0.004 0.006
(5, 2, 0.2) 0.201 0.055 0.092 0.010 0.003 0.003 0.003
(5, 2, 0.4) 0.448 0.058 0.103 0.033 0.005 0.005 0.003
(5, 5, 0.2) 0.202 0.055 0.060 0.004 0.002 0.002 0.002
(5, 5, 0.4) 0.449 0.058 0.072 0.014 0.003 0.003 0.002
(5, 10, 0.2) 0.201 0.056 0.044 0.002 0.001 0.001 0.001
(5, 10, 0.4) 0.448 0.059 0.058 0.007 0.001 0.001 0.002
(10, 1, 0.2) 0.201 0.056 0.093 0.018 0.004 0.004 0.004
(10, 1, 0.4) 0.447 0.059 0.099 0.059 0.004 0.004 0.004
(10, 2, 0.2) 0.202 0.056 0.065 0.009 0.002 0.002 0.002
(10, 2, 0.4) 0.451 0.058 0.071 0.032 0.003 0.003 0.002
(10, 5, 0.2) 0.203 0.055 0.042 0.004 0.001 0.001 0.001
(10, 5, 0.4) 0.451 0.058 0.048 0.014 0.001 0.001 0.001
(10, 10, 0.2) 0.200 0.055 0.031 0.002 0.001 0.001 0.001
(10, 10, 0.4) 0.445 0.058 0.037 0.007 0.001 0.001 0.001

Table 3. Percentage of correctly identified models by β̂con,
β̂σ̂, β̂aee, β̌sim,β̌cuee, β̌upd, and β̂ for selected n0(×102),
T (×10), and a based on 1000 replications from (36).

(n0, T, a) β̂con β̂σ̂ β̂aee β̌sim β̌cuee β̌upd β̂

(1, 1, 0.2) 37.4 37.4 92.1 44.9 46.0 46.4 38.1
(1, 1, 0.4) 0.9 0.9 10.2 0.9 0.8 0.9 0.8
(1, 2, 0.2) 5.4 5.4 45.1 6.4 6.4 6.6 5.2
(1, 2, 0.4) 0.7 0.7 0.0 0.7 0.6 0.4 0.6
(1, 5, 0.2) 1.1 1.1 0.9 0.9 0.6 0.6 1.0
(1, 50, 0.4) 0.9 0.9 0.0 0.9 0.9 0.9 1.0
(1, 10, 0.2) 0.9 0.9 0.0 0.8 0.8 0.7 0.9
(1, 10, 0.4) 0.5 0.5 0.0 0.4 0.4 0.4 0.5
(2, 1, 0.2) 5.6 5.6 15.2 6.7 6.7 6.8 5.8
(2, 1, 0.4) 1.9 1.9 0.0 2.3 1.6 1.6 1.8
(2, 2, 0.2) 0.8 0.8 0.5 0.7 0.7 0.7 0.8
(2, 2, 0.4) 0.7 0.7 0.1 1.1 0.8 0.8 0.8
(2, 5, 0.2) 0.6 0.6 0.0 0.5 0.4 0.4 0.6
(2, 5, 0.4) 0.6 0.6 0.0 0.4 0.4 0.4 0.5
(2, 10, 0.2) 0.7 0.7 0.0 0.7 0.7 0.7 0.7
(2, 10, 0.4) 0.6 0.6 0.0 0.6 0.5 0.5 0.5
(5, 1, 0.2) 1.1 1.1 0.3 1.0 0.9 0.9 1.0
(5, 1, 0.4) 1.1 1.1 0.4 1.1 0.9 0.9 1.1
(5, 2, 0.2) 0.8 0.8 0.2 0.7 0.4 0.4 0.6
(5, 2, 0.4) 1.2 1.2 0.2 1.3 0.9 0.9 1.1
(5, 5, 0.2) 1.0 1.0 0.5 0.8 1.0 1.0 1.0
(5, 5, 0.4) 0.6 0.6 0.0 0.6 0.5 0.5 0.6
(5, 10, 0.2) 0.7 0.7 0.4 0.7 0.7 0.7 0.7
(5, 10, 0.4) 1.1 1.1 0.5 1.1 1.1 1.1 1.1
(10, 1, 0.2) 1.1 1.1 0.7 1.3 0.9 0.9 1.1
(10, 1, 0.4) 1.2 1.2 0.8 1.5 1.0 1.0 1.2
(10, 2, 0.2) 1.2 1.2 0.8 1.4 1.1 1.1 1.2
(10, 2, 0.4) 1.0 1.0 0.6 1.1 1.0 1.0 1.0
(10, 5, 0.2) 1.0 1.0 0.6 1.0 1.0 1.0 1.0
(10, 5, 0.4) 1.3 1.3 0.4 1.2 1.2 1.2 1.2
(10, 10, 0.2) 1.6 1.6 0.7 1.5 1.6 1.6 1.6
(10, 10, 0.4) 0.7 0.7 0.3 0.7 0.7 0.7 0.6

5.2 Implementation to Big Data

We implemented our approach to big data. We assumed
that the data set contained 1000 explanatory variables such
that we had p = 1001 in (31). We choose mti = 1 for all
t ∈ {1, . . . , T} and i ∈ {1, . . . , nt} with fixed nt = n0 =
104. We chose T ∈ {1, 5, 10, 20, 50, 100, 200} such that we
could control the size of the data. For each selected T , we
generated T data sets and wrote them to the hard disk.
We evaluated properties of β̂con, β̂σ̂, β̂aee, β̌sim, β̌cuee, and
β̌upd in one-step IRWLS. We also evaluated properties of

the traditional MLE, given by β̂ for the entire data.
To implement one-step IRWLS, we first loaded individual

data sets sequentially, and then calculated the values of the
six estimators. As only individual data set was needed, our
approach could be used for arbitrarily large T (e.g., a few
thousand). We did not find any difficulties in all of the cases
that we studied. Our approach always provided the results of
the six estimators even when T = 200. The size of the entire
data was about 37.3GB. The time of the computation was
proportional to T . The time taken for β̂con, β̂σ̂, and β̌sim

was about one minute when T = 1 and slightly over three
hours when T = 200. The time taken for β̂aee, β̌cuee, and
β̌upd was about nine times longer than that for β̂con, β̂σ̂,
and β̌sim. This was because the computation of the MLEs
for individual data sets in β̂aee, β̌cuee, and β̌upd was time-
consuming.

We must load the entire data set to memory in the com-
putation of β̂. We successfully derived β̂ by the glm function
of R when T = 20 but not when T = 50. The size of the en-
tire data was about 1.49GB when T = 20 or about 3.73GB
when T = 50. We checked the memory consumption issue
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by Windows Task Manager when T = 20. We found that
the size of memory consumption used by the glm function
of R was about 10GB, which was over six times of the size of
the data. This amount was close to the maximum memory
capacity in size that we could use in our computation. Be-
cause the glm function in R needed to open a few matrices
with sizes identical to the size of the data, the memory con-
sumption in size was often many times higher than the size
of the data. We found that traditional IRWLS could not be
used if the size of the data was over 20% of the memory in
size of the computing system.

6. APPLICATION

We applied our approach to the airline data set, which
has been studied by many authors [14, 12, 22]. The data
set can be downloaded from the ASA (American Statistical
Association) website. The airline data contained flight delay
information from 1987 to 2008 over hundreds of airports in
the United States. The airline data were given by data sets
for individual years. Except for 1987, all of those had over
five million flights. The entire data set contained over 100
million flights. The size of the entire data was over 60GB.

Since some important information was lost in the data
sets before 1994, we decided to analyze the data from 1995
to 2008. We used the variable for minutes of arrival flight
delay to define a Bernoulli response variable. According to
the definition given by FAA (United States Federal Aviation
Administration), a flight is considered late if it is delayed at
least 15 minutes. Then, we defined the value of the Bernoulli
response variable equal to one if the arrival flight was de-
layed at least 15 minutes or zero otherwise. We studied seven
continuous explanatory variables and one factor variable.
The seven explanatory variables were actual elapsed time
(x1), CRS elapsed time (x2), air time (x3), departure de-
lay (x4), distance (x5), taxi in (x6), and taxi out (x7). The
factor variable was days of week (i.e., Monday-Sunday). Af-
ter cleaning missing variables, the final data contained over
84 million observations (i.e., n ≥ 8.4× 107) with size about
40GB. Each individual year data set between 1995 and 2008
had over five million observations.

We assumed that the online analysis was carried out by
files for individual years according to the calendar order. To
compare, we attempted to use the traditional IRWLS given
by the glm function in R to analyze these files. We chose the
file for 1995, which had over 5.2 × 106 records. We studied
two models. The first only contained the seven continuous
explanatory variables. We only studied the main effects of
these variables. The second also contained the factor vari-
able, where we considered the interaction effects between the
factor and continuous explanatory variables. We studied the
second model because we wanted to investigate properties
of the multiple learning procedure introduced in Section 3.5.

We loaded individual year data to memory and applied
the glm function of R. We checked memory consumption of

Table 4. Estimates of coefficients and their standard errors
(×10−2) given by β̂aee, β̌cuee, and β̌upd in the model with
actual elapsed time (x1), CRS elapsed time (x2), and

arrival delay (x4) only.

β̂aee β̌cuee β̌upd

Est SE Est SE Est SE
Intercept −75.78 5.35 −130.52 13.34 −178.32 45.50

x1 4.88 0.35 8.42 0.86 11.49 2.93
x2 −4.88 0.35 −8.42 0.86 −11.49 2.93
x4 4.88 0.34 8.42 0.86 11.49 2.93

Table 5. Estimates of coefficients given by β̌upd with respect
to days of week when only actual elapsed time (x1), CRS
elapsed time (x2), and arrival delay (x4) are considered.

Days of Number of
Week Flights Intercept x1 x2 x4

Mon 12373903 −178.31 11.50 −11.50 11.50
Tue 12266222 −179.15 11.55 −11.55 11.55
Wed 12315917 −178.76 11.52 −11.52 11.52
Thu 12329282 −178.52 11.51 −11.51 11.51
Fri 12363950 −178.31 11.50 −11.50 11.49
Sat 10782918 −178.06 11.48 −11.48 11.48
Sun 11778432 −177.02 11.41 −11.41 11.41

the two models by Windows Task Manager. The first model
used less than 2GB memory in size. The second model used
over 14GB in size. We could not fit the second model for two
years data. We then applied our proposed approach to the
entire data. We loaded files for individual years to memory
sequentially and then computed the set of WSS by the online
approach. After the set of WSS was derived, we computed
all of the six estimators that we considered in the previous
section as well as their variance-covariance matrices.

We followed exactly the same procedure that we had used
in the previous section. After the WSS matrix for the entire
data was derived, we calculated the estimates of parameters
and their standard errors. We studied all of the reduced
models obtained of the first model, which was obtained by
removing a few explanatory variables from it. In all of these,
we checked overdispersion issues and found that it was not
a concern. Therefore, we decided to ignore this issue. We
found that x1, x2, and x4 were important variables, because
their absolute z-values were all over 400. We also found that
x3, x5, x6, and x7 were unimportant variables. For example,
the p-values for x3, x5, x6, and x7 given by β̌upd were 0.85,
0.35, 0.81, and 0.30, respectively. Then, we removed x3, x5,
x6, and x7 and refitted the model by the WSS only. We
calculated all of the six estimators. We found that the results
of β̂con, β̂σ̂, and β̌sim were far away from those of β̂aee,
β̌cuee, and β̌upd. This was because MLEs of individual years

were used in the computation of β̂aee, β̌cuee, and β̌upd. Then,

we decided to focus on β̂aee, β̌cuee, and β̌upd. Their results
are displayed in Table 4.

We implemented the multiple learning procedure in fit-
ting the second model when the factor variable for days of
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week was involved. We defined the full model as the model
with all of the main effects of the continuous and factor
variables, and the interaction effects between the continu-
ous and the factor variables. The full model contained seven
continuous and one factor explanatory variables. The size
of β was 8 × 7 = 56, and the size of the WSS matrix was
(56+1)2 = 3249. We calculated the WSS matrix for the full
model only. We only used it to analyze the full model and its
reduced models, where we treated the first model as one of
the reduced models. We also found that x1, x2, and x4 were
more important than the other four explanatory variables.
We fitted the model with the three important explanatory
variables, the factor variable for days of week, and their in-
teraction effects (Table 5). Our results showed that all of
the three interaction effects were significant, even though
the coefficients were not far away from those given by the
model without the factor variable. We used the WSS ma-
trix obtained from the second model to calculate estimates
of parameters for the first model. We found the WSS ma-
trix was identical to that we had obtained previously. The
results were identical to those given by Table 4.

7. DISCUSSION

In this article, we propose an online multiple learning
approach for GLMs in big data. The approach can overcome
the memory and computational efficiency barriers caused
by the size of the data. The technique of the approach is
developed based on a new concept called working sufficient
statistics (WSS), which becomes sufficient statistics (SS) in
linear models for nonnormal data. Since the size of SS in
GLMs for nonnormal data is often identical to the size of
data, we cannot use SS to reduce the memory needed in
the computation. The usage of WSS successfully solves the
problem. Since the size of the WSS does not depend on the
number of observations, our method can be used even if the
size of data is much higher than the memory size of the
computing system.

Similar to SS in regression, we can construct the set of
WSS based on a family of GLMs. As far as the set of WSS is
available, all of the GLMs in the family can be fitted simul-
taneously without the need of another access of the data.
This induces a multiple learning approach. If an individual
learning approach is used, then one must access the entire
data set again if another model is considered. Because the
access of big data is time consuming, a multiple learning
approach is more efficient than an individual learning ap-
proach.

The difference between online and offline learning is that
an online learning approach can use information of previous
data but an offline learning approach cannot. Since GLMs
for nonnormal data are fitted by an iterative algorithm, the
usage of previous information can significantly enhance the
precision of the computation. We have developed at least
two methods in the one-step IRWLS. The first method (i.e.,

the method for β̂con, β̂σ̂, and β̂aee) does not use any in-
formation of the previous data to construct the objective
function for the current data. This method can be easily
modified to offline learning. Therefore, the first method can
be treated as either an online or an offline learning approach.
The second method (i.e., the method for β̌sim, β̌cuee and
β̌upd) uses the information of the previous data. It is com-
pletely an online method, which cannot be modified to of-
fline learning. Our research shows that online and offline
learning approaches for big data should be developed sepa-
rately. This is left to future research.
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