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Abstract—This work proposed a new approach called regres-
sion PCA (RegPCA) for statistical machine learning and big
data analyses. One of the potential use cases investigated in this
work is to separate the moving objects (foreground) from the
background images. This is achieved by performing regression
before conducting Robust PCA (RPCA). RegPCA works well in
the moving object detection task because the background infor-
mation can be conceived as the regression portion of the images,
while the residual portion of the regression can then be fed into
RPCA to fine tune the foreground detection. The experiments
show that in moving object detection problems RegPCA provides
much better results than applying only RPCA, especially in color
videos and when the moving objects are relatively big. Further
studies are needed to leverage the interesting features of RegPCA
approach and apply it to solve more real world problems.

Index Terms—PCA, Regression, RPCA, Big Data, foreground
detection

I. INTRODUCTION

Principal Component Analysis (PCA) and linear regression
are two well known data analysis methods which have been
widely applied in many areas, such as statistical machine
learning and big data analyses. The two methods are often
complimentary to each other and can be used hand-in-hand,
as in the principal component regression (PCR) approach [1]—
[5]. The philosophy is that PCA can extract the most important
information from explanatory variables and only those prin-
ciple components of the explanatory variables will be used as
regressors. Because the dimension of the explanatory variables
are reduced, the speed and the quality of data analyses are
often improved.

The idea of RegPCA is motivated from PCR but in reverse
order. It applies regression before employing PCA. The re-
gression step accounts for explanatory variables. By treating a
variable of interest as the response, the impact of explanatory
variables can be removed by a regression model. Then, the
PCA step is applied. This step implements the traditional or
a modified PCA to the residuals of the regression model.
An obvious advantage is that RegPCA can remove redundant
information in traditional PCA for dimension reduction or
RPCA for moving object detection. Theoretically, the idea of
RegPCA can be used to any PCA approaches and its variants.
This is because the two steps are implemented sequentially.
RegPCA can be easily combined with any modified PCA and
the implementation is flexible. If the regression step is ignored,
then it is the PCA method. If the PCA step is ignored, then it
is a pure regression method. When both are applied, we call
it a RegPCA method.

We focus on RPCA [6] in this paper because RPCA is
one of the most significant modifications for high-dimensional

image and video analysis. Some successful RPCA appli-
cations include Dynamic Mode Decomposition to separate
background and foreground in greyscale videos [7].

RPCA is powerful in decomposing data matrix for videos
into a low rank component and a sparse component. If
the light intensity of background in a video is stable, then
the background information can be represented by the low
rank component and the moving object information can be
represented by the sparse component of the data matrix. This
property leads to video separation for foreground and back-
ground. Examples include the Grassmannian Robust Adaptive
Subspace Tracking Algorithm (GRASTA) [8] and Panoramic
Robust PCA [9]. Although powerful in greyscale videos,
RPCA finds itself fragile in color videos. When both the
shapes and the colors of the objects must be considered,
RPCA does not separate them well. Although RPCA can put
moving objects into sparse component, it does not provide
correct color information. If the moving objects are not small,
then results given by RPCA are usually meaningless. The
proposed RegPCA method is an interesting answer to address
this challenge. In video processing, RegPCA expresses a given
video into a regression term for its background and an error
term for moving objects. In general, RegPCA aims to maintain
most background information in the regression term and keep
most information of moving objects into model residuals.

In our experiments, we implemented RegRPCA with com-
parison to RPCA for video separation. We consider three
scenarios for evaluation. The first scenario is an ideal case:
the camera is at a fixed position; the light intensity does not
change over time; and the moving objects are small. The
second scenario assumes image stabilization is not available
at neither the hardware nor the software level. There are jitters
in videos; there are lighting intensity changes; and the moving
object is sparse. In the third scenario, we consider a more real-
istic case when the moving objects are not small and therefore
the residual matrix is not sparse. We assume the camera is
mounted at a fixed position and the lighting condition does
not change significantly over time. We also developed a metric
called color deviation to evaluate how much color information
are correctly retained after the foreground and background
separation task.

The contributions of this paper are:

o We proposed RegPCA, a new way to combine Regression
and PCA method.

o We combined RegPCA with RPCA with implementation
as an example to show the ease of modification of
RegPCA.
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o We applied RegRPCA in color video separation task to
show a potential application of the method.

The remainder of the paper is structured as follows. In
Section II, relevant background is introduced. In Section III,
the method of RegPCA, RPCA, combination of two and im-
plementation in video separation are introduced. Experiments
and analysis are described and discussed in Section IV and
the paper is concluded in Section V.

II. BACKGROUND

Traditional principal component analysis (PCA) was first
invented by Karl Pearson in 1901 as an analogue of the
principal axis theorem in mechanics [10]. The method was
independently developed by Harold Hotelling in 1930s [11].
The goal of PCA is to find a subspace of the highly correlated
high-dimensional data matrix with lower dimensional linear
combinations, such that the result can maintain the most
variations of the original data matrix.

Let M be an n X p matrix. By singular value decomposition
(SVD) to M, it is expressed as

M=UDV' )

where U = (uy,...,u,) is a n x p orthogonal matrix
satisfying UTU = I,, V = (vq,...,Vv,) is a p x p
orthogonal matrix for loadings satisfyingV'V = I, and
D = diag(ds,...,dp) is a p x p diagonal matrix for singular
values. The singular values are assumed to be ordered such
that d, > dy >,...,> d, > 0. The columns of Z = UD are
the principal components (PCs) and the columns of V are the
corresponding loadings. The ¢ th PC is PC; = d;u; and its
sample variance is d?/n. For any integer k < p, let

k
M, = deiviT = U,D,V,, )
i=1
where U, = (uy,...,ux), Dy = diag(ds,...,dx), and
Vi = (vi,..., V). The variation of My, is Zle d?/n. The
proportion to the total variation is
k 2
UYL “ 3)
J=1"J
If there is a small k such that \; ~ 1, the dimension of the
residual image matrix can be reduced from p to k with most
variations contained in M. Then, we can use M, in the next
stage analysis.

A. Robust PCA

Traditional PCA has an issue that it is sensitive to large
scale outliers. To deal with this issue, research community
proposed methods based on outliers removing [12], weighted
SVD [13], and robust error function [14]. These methods,
however, can not guarantee the optimality of the result. Thus,
a method called Robust PCA (RPCA) has been proposed [15].
It aims to recover a low-rank matrix from highly corrupted
data. Suppose the observed matrix M is an n X p matrix, and
it can be decomposed as

M=Ly+ S 4)

where L is a low-rank matrix and Sy is a sparse matrix. If
L satisfies some incoherent conditions and Sy is sufficiently
sparse, then Ly and Sy can be recovered by solving a tractable
convex optimization problem:

min [[L][, + ||, (5)
st. L+S =M, (6)

where ||L||, denotes the nuclear norm of matrix M and
IS||; denotes the ¢;-norm of S, X is a hyperparameter. This
problem can be solved via principal component pursuit (PCP)
method [15]

III. METHODOLOGY

In this section, we introduce our method. It includes the
development of regression PCA (RegPCA) in Section III-A,
the combination of RegPCA and RPCA in Section III-B,
and the implementaion of our method to video and image
processing in Section III-C.

A. RegPCA

In image and video processing, the motivation of RegPCA
is to account for a given image by a few underlying images.
The given image is treated as the response. The underlying
images are treated as explanatory variables. In order to fit
those by a regression approach, we need to convert all the
images into vectors by matrix unfolding methods. After the
response is addressed by explanatory variable, a residual
vector is derived. The residual vector can be used to reflect the
information contained by the given image after the impacts of
the underlying images are removed. To carry out a dimension
reduction approach, we need to convert the residual vector
back to a matrix. Then, we obtained our RegPCA method.

Suppose that a matrix for a response variable has been
unfolded to a vector, and a number of matrices for explanatory
variables have also been unfolded to vectors. Then, the interest
is to study the relationship between a given image for the
response and a number of base images for the explanatory
variables.

Let the unfolded vector for the given image be y, and the

unfolded vectors for the base images be x4, ..., x,. Then, the
relationship is modeled by
P
y =180+ > x;B; +e, (M

j=1
where 1 is a vector with all of its components equal to 1, and
€ ~ N(0,0°I) is the error vector. We assume each image
has n pixels, such that we have y = (y1,...,y,)" and X; =

(T1js---,2y;) " forall j € {1,...,p}. By matrices, (7) can
be equivalently expressed as

y =XB +e¢, ®)
where B8 = (Bo,---,3,)" and X = (1,x1,...,%,) is

an n x p—dimensional matrix and € ~ N(0,0%I) is an
n—dimensional error vector. The maximum likelihood esti-
mator(MLE) of ¢ and 3 is

B=X"X)"'XTy

o1

. . ©)
¢t =—(y =XB)"(y - XB)
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In practice, as we are dealing with image, we just use MLE
of 3 and calculate € as € =y — XB

The regression model above offers two parts for the image,
linear function X3 (i.e. regression part) for the base image
and error vector € (i.e. residual part) for the difference from
the base image which would be further analyzed by traditional
PCA method.

By folding the € back to image matrix M with size h X w,
it is possible to apply PCA into it. In particular, we can set
M = M, in (1), where M; is a matrix expression of € with
the same format as the original image. By SVD, we obtain

M;=UD/V/ (10)

where U, = (U1, ..., Uew), Ve = (Ve1, -+, Vew ), and D =

diag(de1, . . ., dew) are defined similarly. For any integer k <
w, we can similarly define post-residual part as:
k
Me = Y deiuevy; = UgDep Vi (11)
i=1
with U = (Ue,...,uek), Do = diag(de, - .., de), and

Ve = (Ver, ..., Ver). This can remove the impacts of base
image and maintain the information of the different part of
the original image.

The RegPCA method can be straightforwardly extended
for videos. Note that only one frame is used in the above
formulation. If multiple frames are used, then it is a method
for videos. To deal with the video, which has multiple frames,
the RegPCA method developed in III-A will be applied
multiple times. For example, to process a video with k frames,
the RegPCA will be applied for k times to process each frame.

If only residual components are considered, then we
can also combine RegPCA with other dimension reduction
method. For example, we can use RPCA to analyze the
residual components given by regression, which provides a
combination of RegPCA and RPCA method. This method will
be introduced in Section III-B.

B. Combination with RPCA

To combine with RPCA (RegRPCA), the first step is
combining the residual components generated by regression
step of RegPCA together to form a residual matrix X with
size n X k where n is the number of pixel of a frame and % is
the number of frames of the video. We treat this X, as data
matrix in RPCA. And then solve the following optimization
problem

(Le, Ec) = argmin [ L[|, 4+ Ao[Ec|y

esTe

subject to L. + E. = X,

12)

where |||, is nuclear norm which is the sum of singular value
of matrix and ||-|[; is /; norm which is the sum of absolute
value of elements of matrix. L. is low rank part of the residual
matrix. E. is the sparse part of the residual matrix.

The above optimization problem could be easily solved by
PCP method. The low rank part will be used as post-residual
for further analysis and the sparse part will be discarded.

Algorithm 1 Video Color Channel Matrices Generation

Input:A video V with k frames, each frame is of size h x w
Output: 3 video color channel matrices R, G, B with size
NxK, N=hxw

read V
R = zeros(N, K),G = zeros(N, K),
B = zeros(N, K)
for ¢ in K do
convert ith frame to image
convert image to /N X 3 matrix m
m, = m[;,:;1],m, = m[;,:, 2], my = m[;,:, 3]
convert m,, my, m; into arrays L, Lg, Ly, with size
921600 x 1
9: R[;, {]=Ly.G[:,i]=Lg.B[:, i]=Ly,
10: Return R, G, B

A R o e

Algorithm 2 Color Channel Matrix Regression

Input:A Video Channel Matrix M
Output: Regression Part M, and Residual part M; of
Video Channel Matrix

X =M];,1]

My = zeros(N, K)

M; = zeros(N, K)

Y =M[,2: K]

for i from 2 to K do
y=Y[,i—1]
B = Linear_Regression(y,X)
Mo[l, Z] = BX
M;[;,i] =y — Mp][;, ]

Return MO;Ml

R A A ol S

=4

C. Implementations in Video Separation

To apply RegRPCA approach to video processing, the first
step is to convert videos into matrices. The algorithm to
convert a video into color channel matrices is illustrated in
Algorithm 1. We first load the video into memory and then
convert each frame into a A X w x 3 matrix where (h,w)
represent the width and height of the frame and 3 represents
the three color channels. We then separate this matrix into
three parts with size h x w representing R,G,B channel of
each frame. Next, we unfold the matrices into three column
vectors with size (h x w) x 1. Finally, we get three video color
channel matrices with size N x k where k is the number of
frames of video and N = h x w is the total number of pixels
of one frame.

We treat color channel matrices R, (=, B as three data ma-
trices and apply RegPCA or RegRPCA to them respectively.
The procedure to create regression part of channel matrix is
illustrated in Algorithm 2. The first frame of video is used as
the base image and the rest of the frames are regressed against
this base image.

In a nutshell, using this two-step RegRPCA approach to
separate moving objects from a video works as follows.
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After applying regression to each video channel matrix, we
can combine the regression parts of each channel matrix,
Ry, Gy, By, to form a video, which represents the background
information of the original video. The residual terms of the
channel matrices, R;, G1,B1, are then processed by RPCA.
Integrating the resulting post-residual color matrices of each
channel, we are able to create video with foreground only.

D. Complexity Analysis

Since the regression step and PCA step are independent.
The complexity of RegPCA Crp (either time or space) can
be expressed as Crp ~ max(Cgr,Cp). Where Cg is the
complexity of regression and Cp is the complexity of PCA.
When modification is applied, for example if PCA is replaced
by RPCA. then the corresponding C'p is thus the complexity
of RPCA.

IV. EXPERIMENTS

Based on the method, three experiments were conducted
to evaluate the proposed RegRPCA. The first experiment is a
color separation task on a screen recorded mobile game whose
light intensity and camera position were totally fixed [16]. The
second and the third experiments are color video separation
tasks for real-world videos shot from a fixed camera [17],
[18]. Some frames of videos are show in Fig. 1a, Fig. 1b and
Fig. 1c. All the algorithms were implemented in Python.

The game video represents an ideal condition that the
camera is fixed and the light intensity does not change and
moving objects are small. The airport video represents a bit
more realistic conditions. It has some small camera jitters and
a bit light intensity changes during the recording. The snow
train video represents another condition. It has fewer camera
jitters and and less light variance than that of the airport video.
However, the snow scene has a unique characteristic. The
moving objects cover a large area of the screen, which means
the residual portion is not sparse.

A. Evaluation Metrics

We use color deviation to evaluate to what extent the color
of the resulting images has deviated from the source data.
The color deviation C' of a frame is defined as follows:

1 1 &KXy — XLPH(X)H(X;
ool LS T GPHEOHY
3 eff =0 17
where Nz is the total effect and is defined below.
> 1
Negy = 7 ; (14)
1 2 >y HOX)H(X,5)

where X;; is the ith color channel value of jth pixel of the
frame, X {j is the corresponding value of the residual part of
the frame. The Heaviside setp function H(x) is defined as

follows:
1 if
H(z) = { ifx>0

15
0ifx=0, (13)

Therefore, the color deviation of a video of k frames can
be expressed in Equation 16.

Ctotal = (16)

k
Z Cl7
=1

When the value of Ciyiq; small, it means there are less
color deviation from the original videos.

T =

B. Experiment One: Game Video

The first experiment is a video separation task on the
game video. The results of color deviation are shown in
Table I. Lower deviation value indicates better color retention.
RegRPCA with 10 iterations has an average deviation value
of 0.727 while RPCA with 10 iterations has an average value
of 0.972. Even after 50 iterations, the deviation value is
only decreased up to 0.966. Visual performance of the two
approaches is illustrated in Fig. 2a. The 1st row is the orgnial
video; the 2nd row is RegRPCA; the 3rd row is RPCA with 10
iterations and the last row is RPCA with 50 iterations. The
experiment results show that in such condition, the results
of RegRPCA has systematically lower color deviation than
applying RPCA only. This is also visible when examining
the visual performance of the images. The colors of each
gaming characters in the results of RegRPCA are similar
to the original images. There are some ghost effects in the
output images due to matrix reduction. In RPCA, although
the shapes of the characters are presented clearly, the colors
of the pictures are completely off.

In terms of the accuracy of separation, the visual effects
show that both RegRPCA and RPCA can extract the informa-
tion of moving characters correctly, but the RegRPCA outputs
much cleaner image.

C. Experiment Two: Airport Video

The second experiment is a video separation task on the
airport video. The numeric results of color deviation of the
video are in Table II. The numeric results showed similar
trends as in the game video. RegRPCA has an average
deviation of 0.718 while the average of RPCA is around 0.98.
Visual inpsection fo the results are shown in Fig. 2b.

The experiment results show that in this video, RegRPCA
has less color deviation than RPCA only. Even when the
iteration of RPCA goes much higher, the color deviation of
RPCA is still higher than RegRPCA. It can also be seen from
the results of visual performance. The color of people in the
results of RegRPCA is similar to the original images although
the background is not clean due to the camera jitters and
the process of simple matrix reduction. In RPCA, the shape
of moving objects can be figured out quickly. But when the
iteration is low (10 to 50), the color of result is very different
from the original one.

As for the accuracy of separation, we find that RPCA can
extract the shape of people well but not much color informa-
tion from the results. RegRPCA can extract the information of
moving objects well with the correct color information. Part
of background information were visible in both cases due to
small camera jitters.
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(b) Examples of Frames in Airport Videos

(c) Examples of Frames in snow train Videos

Fig. 1: Video Examples

(a) Results of Game Video.

(b) Results of Airport Video

(c) Results of snow train Video.

Fig. 2: Visual Results. Row 1 are the original frames. Row 2 are the results of RegPCA. Row 3 are the results of RPCA with
10 iterations. Row 4 are the results of RPCA with 50 iterations.

D. Experiment Three: Snow Train Video

The third experiment is a video separation task on the snow
train video [18]. The color deviation scores of the methods are
in Table III and the visual performance is in Fig. 2c.

The numeric deviation results show that in this video,
RegRPCA also has much less color deviation at around 0.53.
While the deviation results of RPCA is a bit more than 1.02,
noticeably higher than the results of RPCA from the other two
experiments. This is because that in the Snowtrain video, the
moving objects contains snow that spreads out and covers a
large area of the screen. The sparse portion of the matric is not
sparse enough in such situation for RPCA to be as effective
as it was in the previous two experiments. Visual inspection
of RPCA (10 iterations and 50 iterations) show poor results
with profound noises. The train and the snow are hardly
recognizable from the resulting images. The RegRPCA was

TABLE I: Color Deviation of the Game Video.

method/channel | Red [ Green | Blue [ Average
RegRPCA (10 iter) | 0.7660 | 0.6877 | 0.7265 0.7267
RPCA(10 iter) 0.9768 | 0.9705 | 0.9687 | 0.97203
RPCA(50 iter) 0.9747 | 0.9626 | 0.9604 | 0.9659

able to extract the color information and the shape information
very well. In short, RPCA can roughly depict the shape of the
train but not the snow. RegRPCA handles both the train and
the snow very well.

V. CONCLUSION AND FUTURE WORK
A. Conclusion

From the results of the above experiments, it is evident
that by applying the RegPCA approach to RPCA, foreground
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TABLE II: Color Deviation of the Airport Video

method/channel | Red [ Green | Blue [ Average
RegRPCA (10 iter) | 0.6951 | 0.7402 | 0.7172 | 0.7175
RPCA(10 iter) 0.9850 | 0.9801 | 0.9838 | 0.9830
RPCA(50 iter) 0.9731 | 0.9653 | 0.9707 | 0.9697

object separation tasks were significantly improved when the
videos have colors and when the moving objects are relatively
large. The successes of these results showed an interesting
perspective of this reverse PCR thinking. At a conceptual
level, the background of each frame has similar regression
terms. Therefore, the signals of moving objects mostly exist
in the residual portion of the regression results. By feeding the
residual of regression to RPCA, the expression of the moving
objects are much more refined. The limitations of applying
RegPCA to this use case assumes the background information
does not change a lot during a short time frame. These means
additional techniques, such as smoothing, should be applied
to tackle camera jitters and sudden light intensity changes.

B. Future Work

We embarked a new paradigm in combining regressions
with PCA. It seems trivial if you only look at the mechanism
of calculation itself. However, the real implications of this
reserve PCR approach is far from being well understood. Two
potential directions, both the methodology and the technology,
should be explored in future work. From the perspective
of methodology, it should be noted that regressions and
PCAs both have many different modifications. So there are
many possible combinations among them, for example, Ridge
Regression and Sparse PCA [19], Polynomial Regression and
RPCA, and so on. Developing these methods and finding
appropriate applications still have a long way to go.

As for technology, there are two things to be explored.
First of all, we only applied very simple techniques in this
paper when developing the explanatory variables. Likewise,
to generate the residual portion, we simply use the reduction
of the matrix. More sophisticated methods could have been
applied to improve the performance in color video separation
task. For example, applying median blurring to the residual
can effectively remove the noisy pixels of the result although
it will also negatively impact the quality of the images or
videos. How to properly apply these techniques to improve the
performance needs further study. Second, the generality of the
proposed RegRPCA should be investigated. The experiments
conducted in this work showed great results, partially due
to the fact that the cameras were in fixed positions and the
lighting conditions did not change much. We have not yet
evaluated the situations when the cameras are also moving.
It is therefore necessary to explore if the proposed approach

In conclusion, much more can be explored in the direction
of regression PCA. We remain hopeful that this approach will
have some interesting features and valuable use cases in the
world of computer vision, big data analysis and statistical
machine learning.

TABLE III: Color Deviation of the Snowtrain Video

method/channel | Red [ Green | Blue [ Average

RegRPCA 0.5492 | 0.5111 | 0.5322 | 0.5302
RPCA(10 iter) 1.0297 | 1.0298 | 1.0288 1.0295
RPCA(50 iter) 1.0245 | 1.0249 | 1.0244 1.0246

can be applied to broader situations and videos of different
characteristics.
REFERENCES

[1] L T. Jolliffe, “Principal components in regression analysis,” in Principal
component analysis. Springer, 1986, pp. 129-155.

[2] E. Barshan, A. Ghodsi, Z. Azimifar, and M. Z. Jahromi, “Supervised
principal component analysis: Visualization, classification and regres-
sion on subspaces and submanifolds,” Pattern Recognition, vol. 44,
no. 7, pp. 1357-1371, 2011.

[3] Z.-y. Liu, J.-f. Huang, J.-j. Shi, R.-x. Tao, W. Zhou, and L.-l. Zhang,
“Characterizing and estimating rice brown spot disease severity using
stepwise regression, principal component regression and partial least-
square regression,” Journal of Zhejiang University Science B, vol. 8,
no. 10, pp. 738-744, 2007.

[4] S. A. Abdul-Wahab, C. S. Bakheit, and S. M. Al-Alawi, “Principal
component and multiple regression analysis in modelling of ground-
level ozone and factors affecting its concentrations,” Environmental
Modelling & Software, vol. 20, no. 10, pp. 1263-1271, 2005.

[5] Y. Tao, H. Shi, B. Song, and S. Tan, “Parallel quality-related dynamic
principal component regression method for chemical process monitor-
ing,” Journal of Process Control, vol. 73, pp. 33—45, 2019.

[6] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization,” in Advances in neural information processing
systems, 2009, pp. 2080-2088.

[71 J. Grosek and J. N. Kutz, “Dynamic mode decomposition for
real-time background/foreground separation in video,” arXiv preprint
arXiv:1404.7592, 2014.

[8] J.He, L. Balzano, and A. Szlam, “Incremental gradient on the grassman-
nian for online foreground and background separation in subsampled
video,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. 1EEE, 2012, pp. 1568-1575.

[9]1 B. Moore, C. Gao, and R. R. Nadakuditi, “Panoramic robust pca for
foreground-background separation on noisy, free-motion camera video,”
IEEE Transactions on Computational Imaging, 2019.

[10] K. Pearson, “Principal components analysis,” The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, vol. 6,
no. 2, p. 559, 1901.

[11] H. Hotelling, “Relations between two sets of variates,” in Breakthroughs
in statistics. Springer, 1992, pp. 162-190.

[12] C. Hastings, F. Mosteller, J. W. Tukey, C. P. Winsor et al, “Low
moments for small samples: a comparative study of order statistics,”
The Annals of Mathematical Statistics, vol. 18, no. 3, pp. 413-426,
1947.

[13] K. R. Gabriel and S. Zamir, “Lower rank approximation of matrices
by least squares with any choice of weights,” Technometrics, vol. 21,
no. 4, pp. 489—498, 1979.

[14] F. De la Torre and M. J. Black, “Robust principal component analysis for
computer vision,” in Proceedings Eighth IEEE International Conference
on Computer Vision. ICCV 2001, vol. 1. IEEE, 2001, pp. 362-369.

[15] E.J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM (JACM), vol. 58, no. 3, p. 11, 2011.

[16] mihoyo, 2019. [Online]. Available: https://honkaiimpact3.mihoyo.com/
global

[17] B. Spears, “What happens on the ground when you are
landing,” 2019. [Online]. Available: https://www.youtube.com/watch?
v=nRQ70lu7IYo&t=5s

[18] satsumannoyaji, 2019. [Online]. Available: https://www.youtube.com/
watch?v=n3pTSvQSH_E

[19] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” Journal of computational and graphical statistics, vol. 15,
no. 2, pp. 265-286, 2006.

Authorized licensed use limited to: Purdue University. Downloaded on July 26,2021 at 23:32:36 UTC from IEEE Xplore. Restrictions apply.



