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ABSTRACT
This article develops a new method called iteratively reweighted
least squares with random effects (IRWLSR) for maximum likelihood
in generalized linearmixed effectsmodels (GLMMs). As normal distri-
butions are used for random effects, the likelihood functions contain
intractable integrals except when the responses are normal. This
often induces computational difficulties in fitting GLMMs for non-
normal responses. The proposed IRWLSR successfully overcomes the
difficulties as it only needs computational methods for linear mixed
effects models and can be applied to any GLMMs with arbitrary link
functions. It can be used even when high-dimensional intractable
integrals appear in the likelihood function. The simulation study
shows that the results are comparable to and sometimes are more
precise than those from the Laplace approximation in the case when
the Laplace approximation can be applied. It can also be applied to
the case when the Laplace approximation cannot be applied.
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1. Introduction

The main contribution of the article is the development of a new method called itera-
tively reweighted least squares with random effects (IRWLSR) for maximum-likelihood
estimation (MLE) of generalized linear mixed effects models (GLLMs), such that all of the
computations can be carried out under the framework of linear mixed effects (LMMs).
It is well known that the likelihood function of a GLMM for non-normal responses con-
tains intractable integrals, leading to difficulties in computing MLEs of model parameters.
These difficulties can be completely avoided by IRWLSR, because it only needs computa-
tional methods for MLEs of LMMs. It is not necessary to consider any numerical methods
for intractable integrals in the computation. This means that the derivation of MLEs of
GLMMs for non-normal responses can be as easy as that for normal responses.

As normal distributions are used to model random effects, the likelihood functions of
GLMMs contain intractable integrals except the case when the responses are normally
distributed. This induces difficulties to implement the maximum-likelihood approach to
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GLMMs when the responses are not normal. To overcome the difficulties, many meth-
ods have been proposed. Examples include integrated nested Laplace approximation
(INLA) [1], penalized quasi-likelihood (PQL) [2,3], Gauss-Hermite quadrature [4], Monte
Carlo EM gradient (MCEMG) [5] and Gibbs sampler [6]. These methods may be efficient
if the dimension of intractable integrals is low. However, they have difficulties when high-
dimensional and irreducible intractable integrals are present, meaning that the dimension
of an intractable integral increases with the sample size [7,8]. Our proposed IRWLSR can
overcome these difficulties.

IRWLSR is motivated from iteratively reweighted least squares (IRWLS) [9]. IRWLS
is the standard computational method for MLEs of GLMs for non-normal responses. It
has been widely used by many software packages, such as R, SAS, Python and MatLab.
In each iteration, IRWLS uses the weighted least-squares (WLS) method to solve a work-
ing weighted linear model (WWLM) for normal responses. The working weights and
responses in the current iteration are determined by solutions of the previous iteration.
The exact MLEs are derived if the algorithm converges. This means that IRWLS success-
fully changes the computation for non-normal responses to that for normal responses.
Because solutions in each iteration can be analytically solved, IRWLS is extremely efficient
in computing MLEs of GLMs for non-normal responses. As the link function is only used
in updating the working weights and responses, IRWLS can be implemented to any GLMs
with arbitrary link functions.

We find that the idea of IRWLS can be extended from GLMs to GLMMs, leading to
the derivation of IRWLSR. Since a GLMM can be treated as a GLM conditioning on
random effects, IRWLS can be used to compute the conditional MLE given the random
effects. The link function is only used in updating the working weights and responses.
This can provide the exact conditional MLEs given the random effects. To incorporate the
idea to GLMMs, we assume that the random effects are not observed. By treating ran-
dom effects as random variables, we obtain a working weighted linear mixed effects model
(WWLMM). We study the likelihood function of theWWLMM in each iteration. We find
that the likelihood function does not contain any intractable integrals, and the computa-
tion of the MLEs of fixed and random effects parameters is efficient. After they have been
obtained, we calculate predicted values of the random effects in the WWLMM. Combine
those with the MLEs of fixed effects parameters. We obtain the predicted values of the lin-
ear components, which are used in the next iteration. In the end, we obtain the MLEs of
the GLMM.

Several advantages are quickly identified. The first is that the implementation of
IRWLSR does not need any numerical evaluations of intractable integrals. This means that
IRWLSR can be used to any kinds ofGLMMs even if high-dimensional intractable integrals
are present in the likelihood functions. The second is that any algorithm for LMMs can be
modified to an algorithm forGLMMs. In each iteration, the predicted values of the random
effects are obtained by their conditional expected values given the working responses. This
can be exactly carried out by matrix operations, leading to the next iteration. The third is
that IRWLSR can be easily applied to any link functions. The link function is only used in
updating the working weights and responses. It is not involved in the computation of the
MLEs in the iterations. Thus, the implementation of IRWLSR only needs an algorithm for
the MLEs of LMMs.
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Although IRWLSR can be used to any kinds of GLMMs with any kinds of reasonable
link functions, we focus our presentation on binomial and Poisson data because of their
popularity. We evaluate the performance of the approach in two scenarios. In the first sce-
nario, we assume that the dimension of the intractable integrals is low. A typical example
is the longitudinal study for count. This usually involves a number of clusters with depen-
dence between clusters ignored.Many software packages can be used.We pick up the lme4
package in R in our comparison. We find that our results are comparable to and some-
times are more precise than those given by the package. To demonstrate flexibility of our
approach, we pick up a link function which has not been adopted by the package yet. We
want to show that IRWLSR can be implemented with arbitrary link functions. In the sec-
ond scenario, we assume that the dimension of the intractable integral is high. We study
the case when the dimension of the intractable integrals is identical to the sample size. It
has been previously pointed out that neither the Laplace approximation nor the MCMC
approach can be applied [7,8]. Our method can be easily applied because it does not need
any numerical evaluations of high-dimensional intractable integrals.

The article is organized as follows. In Section 2, we provide a review of GLMMs under
the framework of exponential family distributions. In Section 3, we present our method.
In Section 4, we specify our method to two kinds of GLMMs. In Section 5, we evaluate the
performance of our method via simulation studies. In Section 6, we apply our method to
a real-world data set. In Section 7, we provide a discussion.

2. Review

GLMs are proposed for exponential family distributions. Their purpose is to model
expected values of the response variables via the explanatory variables. Three compo-
nents are needed to define a GLM. The random component consists of a response vector
y = (y1, . . . , yn)� with y1, . . . , yn independently obtained from an exponential family dis-
tribution, where n is the sample size. An exponential family distribution has a probability
mass function (PMF) or a probability density function (PDF) as

f (yi) = exp
[
yiωi − b(ωi)

a(φ)
+ c(yi,φ)

]
, (1)

where ωi is a canonical parameter representing the location and φ ∈ R is a dispersion
parameter representing the scale. GLMs can be specified to normal, Bernoulli, binomial
or Poisson distributions. Under (1), one has E(yi) = b′(ωi) = μi and V(yi) = a(φ)b′′(ωi).
The linear component η = (η1, . . . , ηn)� is a vector related to explanatory variables by
ηi = x�

i β for all i ∈ {1, . . . , n}, where xi = (1, xi1, . . . , xi(p−1))
� is the ith observed vec-

tor of explanatory variables and β = (β0,β1, . . . ,βp−1)
� represents a vector of regression

coefficients. The link function g(·) connects μi and ηi through ηi = g(μi) = g[b′(ωi)] =
x�
i β for all i ∈ {1, . . . , n}. The unknown parameters β and φ are estimated by the
maximum-likelihood approach.

Suppose that the conditional distribution of yi given random effects γ is given by (1). A
GLMM is proposed as

g(μi) = ηi = x�
i β + z�

i γ , i = 1, . . . , n, (2)



4 T. ZHANG

where β is a p-dimensional parameter vector for fixed-effects, γ is a q-dimensional vector
for random-effects, and μi = b′(ωi) = E(yi|γ ) is the conditional mean of yi given γ . The
conditional variance of yi is V(yi|γ ) = a(φ)b′′(ωi). A common way to model γ is to use a
multivariate normal distribution as

γ ∼ N (0,Vδ), (3)

where Vδ is a q × q-dimensional variance-covariance component matrix for γ and δ =
(δ1, . . . , δr)� is an r-dimensional parameter vector contained by Vδ .

Let �(β ,φ|γ ) be the log-likelihood function of (2) under (1) for a given γ and πδ(γ ) be
the prior density of γ given by (3). Since γ is not observed, the likelihood function of the
GLMM is obtained by integrating out γ in the joint distribution of y and γ as

L(θ) =
∫

Rq
e�(β ,φ|γ )πδ(γ ) dγ , (4)

where θ = (β�,φ, δ�)� is the vector of all parameters contained by the model. The MLE
of θ satisfies

θ̂ = argmax
θ

�(θ), (5)

where �(θ) = log L(θ) is the log-likelihood function of the model.
It is well-known that the right-hand size of (4) is intractable if the distribution given

by (1) is not normal. In this case, the computation of θ̂ is challenging as one needs to
numerically evaluate the intractable integral over the entire R

q. This is extremely difficult
when q is large. A couple of the most popular methods are the penalized quasi-likelihood
(PQL) [2] and the integrated nested Laplace approximation (INLA) [1]. They approximate
the right-hand side of (4) by the Laplace approximation, which relies on

∫
Rd

eϕθ (b)db ≈ (2π)a/2eϕθ (b̂θ )

| − det{
ϕθ (b̂θ )}|1/2
, (6)

where ϕθ (b) is a smooth function of b which may also depend on θ , b̂θ = argmaxb ϕθ (b),
and 
ϕθ (b) is the Hessian matrix of ϕθ (b) with respect to b. After applying the Laplace
approximation to (4) for a given θ with q = d in (6), one also needs to calculate its gradient
vector andHessianmatrix. After that, another optimization procedure is needed for θ̂ . This
often involves an optimization problem of a high-dimensional parameter if q is large.

In addition, MCMC algorithms developed under the Bayesian approach can be used to
approximate the right-hand side of (4). Computation in MCMC is also an issue since the
usual implementation needs a large amount of computational overhead [10,11]. To apply
theMCMC, one needs to specify a proposal distribution onR

q. The acceptance of the new
sample is jointly determined by the old sample, the new sample and the proposal distribu-
tion. The acceptance probability could be extremely low if q is only moderately large. To
solve the problem, Gibbs sampler is proposed [6]. Instead of updating the entire parameter
values, Gibbs sampler updates individual parameter values conditioning on the remaining
parameter values. Its implementation needs to compute the inverse of a sub-matrix of the
variance–covariance matrix of the random effects and its determinant. As the inverse and



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 5

the determinant depend on the parameters, the computation must be conducted in each
stage of the updating procedure. Thus, the implementation of the MCMC algorithm is
often time-consuming and the result is unstable, especially when q is large.

POL does not work well because it can lead to an asymptotically biased estimator and
hence inconsistent [12]. Therefore, it is recommended not used in practice [13, P. 198].
Properties of Laplace approximation and Bayesian approaches have been previously stud-
ied for irreducible high-dimensional integrals by Shun and McCullagh [8]. Their article
points out that the performance of the Laplace approximation depends on the relation-
ship between d and n. The approximation given by (6) is not valid for the right-hand side
of (4) if d does not vanish at rate n1/3. This also occurs in the computation of posterior
expectations in the Bayesian approach when the parameter is high dimensional.

3. Method

Our method includes the construction of the WWLMM in Section 3.1, the development
of the entire IRWLSR procedure in Section 3.2, and the derivation of Fisher Information
in Section 3.3. Since γ is used in the construction of theWWLMM, we introduce the con-
ditional MLE problem at the beginning of this section.We then assume that γ is unknown
and propose our IRWLSR. The method implies that any numerical algorithm for LMMs
can be extended to a numerical algorithm for GLMMs.

3.1. Workingmodel

We investigate IRWLS for (2) with a given γ . If γ is assumed known, then the GLMM
becomes a GLM. We can use IRWLS to compute the exact values of β̂γ and φ̂γ , the con-
ditional MLEs of β and φ given γ , respectively. Because the MLE of δ can be directly
computed by (3), it is enough for us to focus on the derivation of β̂γ and φ̂γ only. In par-
ticular, we obtain the log-likelihood function of model parameters given by (1), (2) and (3)
with a given γ as

�(θ |γ ) = �(β ,φ, δ|γ ) = �(β ,φ|γ )+ �(δ|γ ), (7)

where

�(δ|γ ) = logπδ(γ ) = −q
2
log(2π)− 1

2
log | det(Vδ)| − 1

2
γ �V−1

δ γ (8)

is the log-likelihood function of δ given by (3).
The conditional MLE of θ given γ , denoted by θ̂ γ = (β̂

�
γ , φ̂γ , δ̂�γ )�, where δ̂γ is the

conditional MLE of δ given γ , is solved by

θ̂ γ = argmax
θ

�(β ,φ, δ|γ ). (9)

As (β�,φ)� and δ are well separated by the first and second terms on the right-hand side
of (7), we estimate them separately by β̂γ = argmaxβ �(β ,φ|γ ) and δ̂γ = argmaxδ �(δ|γ )



6 T. ZHANG

with φ̂γ given by a moment estimator [14] as

a(φ̂γ ) = 1
n

n∑
i=1

(yi − μ̂i,γ )
2

b′′[h(η̂i,γ ))]
, (10)

where μ̂i,γ = b′[h(η̂i,γ )] and η̂i,γ = x�
i β̂γ + z�

i γ are predicted values of the ith response
and linear component.

We use IRWLS to compute the exact value of β̂γ . In particular, letβ
(t)
γ be the tth iterative

value of β̂γ . Then, the tth iterative value of the linear component is

η
(t)
i,γ = x�

i β(t)γ + z�
i γ . (11)

Let μ(t)i,γ = g−1(η
(t)
i,γ ) and μ

(t)
γ = (μ

(t)
1,γ , . . . ,μ

(t)
n,γ )

�. In the tth iteration, the ith working
weights is

w(t)i,γ = 1

b′′[h(η(t)i,γ )]

(
∂μ

(t)
i,γ

∂η
(t)
i,γ

)
(12)

and the ith working responses is

u(t)i,γ = η
(t)
i,γ + (yi − μ

(t)
i,γ )

∂η
(t)
i,γ

∂μ
(t)
i,γ

. (13)

Then, we obtain the tth working model as

u(t)γ = Xβ + Zγ + ε, (14)

where ε ∼ N (0, σ 2{W(t)
γ }−1), σ 2 = a(φ), W(t)

γ = diag(w(t)1,γ , . . . ,w
(t)
n,γ ), X = (x�

1 , . . . ,
x�
n )

�, and Z = (z�
1 , . . . , z

�
n )

�. By maximizing the log-likelihood function of (14) given
γ , we obtain β(t+1)

γ , the next iterated value of β̂γ . The derivation of β̂γ does not need σ 2.
We only use (10) after β̂γ is available. Thus, the implementation of IRWLS for β̂γ does not
involve the computation of φ̂γ .

IRWLS can only be used when γ is known. Thus, it cannot be used to fit GLMMs. Note
that theworkingmodel given by (14) is completely a normalmodel.We investigatewhether
it can be modified for GLMMs. This motivates the development of our IRWLSR.

3.2. IRWLSR

Similar to IRWLS, the major issue in IRWLSR is the construction of the working weights
and responses for (14) such that the next iteration can be carried out. This needs expres-
sions similar to (11) –(13). Because γ is unknown, we predict γ in the iterations. Therefore,
IRWLSR needs to update both θ̂ γ and γ . We use θ̂ = (β̂

�
, φ̂, δ̂

�
)� to represent θ̂ with

unobserved γ and γ̂ to represent the predicted value of γ under θ̂ . A goal of IRWLSR is to
provide θ̂ and γ̂ . Another goal is to provide the Fisher information, which is discussed in
Section 3.3.
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Let θ (t) = ({β(t)}�,φ(t), {δ(t)}�)� and γ (t) be the tth iterative values of θ̂ and γ̂ , respec-
tively. Assume that they have been derived in the previous iteration. In the current iteration,
we construct the ith linear component as

η
(t)
i = x�

i β(t) + z�
i γ (t), (15)

the ith predicted value of μi as μ
(t)
i = g−1(η

(t)
i ). Then, μ(t) = (μ

(t)
1 , . . . ,μ(t)n )� is the

predicted conditional mean vector of the entire response. The ith working weight is

w(t)i = 1

b′′[h(η(t)i )]

(
∂μ

(t)
i

∂η
(t)
i

)
(16)

and the ith working response is

u(t)i = η
(t)
i + (yi − μ

(t)
i )

∂η
(t)
i

∂μ
(t)
i

. (17)

Then, (14) becomes

u(t) = Xβ + Zγ + ε, (18)

where u(t) = (u(t)1 , . . . , u(t)n )�, ε ∼ N (0, σ 2{W(t)}−1), σ 2 = a(φ), W(t) = diag(w(t)1 , . . . ,
w(t)n ), the prior distribution of γ is given by (3), and ε and γ are independent. Similar to
IRWLS, we do not need φ(t) in the derivation of (18). We use (18) to derive θ (t+1) and
γ (t+1) for the next iteration.

Since γ is unobserved, we cannot use the method for the conditional MLE introduced
in Section 3.1.We develop amethod for the unconditional MLE, where we need to provide
both θ (t+1) and γ (t+1) in the tth iteration. We find that the entire computation does not
need any numerical evaluations of intractable integrals. We put the detail of the derivation
in Appendix A and only introduce the main steps below.

Integrating γ out in the joint distribution of u(t) and γ given by (18), we obtain the
marginal distribution of u(t) as

u(t) ∼ N (Xβ , σ 2Rδ), (19)

where Rδ = ZBδZ� + {W(t)}−1 and Bδ = σ−2Vδ . The marginal log-likelihood function
of θ in the tth iteration is

�(t)(θ) = −n
2
log(2π)− n

2
log σ 2 − 1

2
| det(Rδ)| − 1

2σ 2 (u
(t) − Xβ)�R−1

δ (u(t) − Xβ).
(20)

We obtain θ (t+1) by

θ (t+1) = argmax
θ

�(t)(θ). (21)

We use the profile maximum-likelihood approach to compute θ (t+1), because it can reduce
the dimensionality in the optimization problem given by (21). In particular, for given δ, the
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conditional MLE of β is

β
(t+1)
δ = (X�R−1

δ X)−1X�R−1
δ u(t) (22)

and the conditional MLE of φ is

φ
(t+1)
δ = a−1

(
1
n
{u(t)}�Mδu(t)

)
, (23)

where Mδ = R−1
δ − R−1

δ X(X�R−1
δ X)−1X�R−1

δ . Putting these into (20), we obtain the
profile log-likelihood function of δ as

�
(t)
P (δ) = −n

2

[
1 + log

(
2π
n

)]
− 1

2
log | det(Mδ)| − n

2
log({u(t)}�Mδu(t)). (24)

We calculate the MLE of δ by

δ(t+1) = argmax
δ

�P(δ). (25)

After δ(t+1) is obtained, we compute β(t+1) and φ(t+1) by β(t+1) = β
(t+1)
δ(t+1) and φ(t+1) =

φ
(t+1)
δ(t+1) , respectively, which provides the final solution of θ (t+1).
We use the conditional distribution of γ given u(t+1) in the derivation of γ (t+1). Note

that they are jointly normal. We calculate the conditional mean vector of γ given u(t) and
obtain E(γ |u(t)) = BδZ�Mδu(t), leading to

γ (t+1) = Bδ(t+1)Z�Mδ(t+1)u(t). (26)

After both θ (t+1) and γ (t+1) are obtained, we can carry out the next iteration. To start our
method, we need to provide u(0) andW(0), the initial guesses of the working response and
weight. We choose the same as those used by IRWLS. Then, we can conduct the entire
IRWLSR procedure. We summarize our algorithm below.

Algorithm of IRWLSR for MLEs of GLMMs.

(i) Obtain u(0) andW(0) by the traditional IRWLS method.
(ii) Based on u(t) and W(t) in the previous iteration, calculate θ (t+1) by (21) and γ (t+1)

by (26), respectively.
(iii) Update u(t) andW(t) by u(t+1) andW(t+1) using (16) and (17), respectively.
(iv) Iterate (ii) and (iii) until convergence.

We compare θ (t) given by the IRWLSR with θ (t)γ given by (9). We treat θ (t) as an esti-
mator of θ by applying the multiple imputing approach to θ (t)γ with a missing γ . Following
traditional approach for asymptotics of multiple imputation [15,16], we investigate asymp-
totic properties of θ (t) by studying the difference between θ (t) and θ (t)γ for sufficiently large
t. Note that t is the number of iterations. It is usually not large in the computation. There-
fore, it is enough for us to study the problem for a bounded t (e.g. t ≤ 50). We modify
conclusions in the two articles. We summarize our findings by the following proposition.
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Proposition 3.1: If
√
n(θ (t)

γ̂ (t)
− θ (t)) weakly converges to a multivariate distribution with

finite second-order moments for a fixed t as n → ∞, then
√
n(θ (t) − θ̂) converges to a mul-

tivariate normal distributionwith the Fisher Information given by the asymptotic distribution
of

√
n(θ̂ − θ0) for a bounded varied t when n → ∞, where θ0 is the true parameter.

Proof: By Theorem 1 of [16], we conclude that the asymptotic distributions of
√
n(θ̂ γ̂ −

θ0) and
√
n(θ̂ − θ0) are identical and

√
n(θ̂ γ̂ − θ̂) goes to zero in probability. As θ

(t)
γ̂

con-

verges to the globalmaximum,we can replace θ̂ γ̂ by θ
(t)
γ̂

in the expression of the asymptotic
distribution. Combined with the assumptions, we draw the conclusion. �

The conditions of Proposition 3.1 are weak as the limiting distribution of
√
n(θ (t)

γ̂ (t)
−

θ (t)) is studied under the WWLMM for normal data. The fact is that for a given t, θ (t)γ is
the conditional MLE and θ (t) is the unconditional MLE of θ in the working model. There-
fore, the relationship between the conditional and unconditional MLEs in LMMs can be
migrated to that inGLMMswith predicted γ̂

(t) in the iterations, which induces the limiting
distribution of

√
n(θ̂ − θ0).

It is well known that the integral in the likelihood function given by the right-hand side
of (4) is intractable in binomial or Poisson data. According to the conclusion given by [8],
it is unlikely to use the Laplace approximation to evaluate the integral if its dimension is
large, but our method can overcome the difficulty.

In binomial GLMMs, we assume that yi ∼ Bin(mi,πi) independently given γ , where
g(·) in (2) may be specified as the logistic, the cloglog, or the general inverse CDF link. The
general inverse CDF link includes the probit and the Cauchy links. To implement IRWLSR,
we need to choose the initial u(0)i and w(0)i for all i ∈ {1, . . . , n}. We use those given by the
traditional IRWLS.

If the logistic link is used, then (2) becomes

log
πi

1 − πi
= ηi = x�

i β + z�
i γ , i = 1, . . . , n. (27)

Following the traditional IRWLS, we have u(0)i = log[(yi + 0.5)/(mi − yi + 0.5)] and
w(0)i = mi(yi + 0.5)(mi − yi + 0.5)/(mi + 1)2. Then, we obtain θ (1) and γ (1) by (21) and
(26), respectively. By (16) and (17), if t ≥ 1, then we have w(t)i = miπ

(t)
i (1 − π

(t)
i ) and

u(t)i = η
(t)
i + (yi − miπ

(t)
i )/[miπ

(t)
i (1 − π

(t)
i )], where π

(t)
i = eη

(t)
i /(1 + eη

(t)
i ) and η(t)i is

given by (15). Thus, we can carry out our IRWLSR.
If the general inverse CDF link is used, then (2) becomes


−1(πi) = ηi = x�
i β + z�

i γ , 1 = 1, . . . , n. (28)

where 
(·) is a CDF of a continuous random variable taking values in the entire
R. Following the traditional IRWLS, we have u(0)i = 
−1[(yi + 0.5)/(mi + 1)] and
w(0)i = miψ

2(u(0)i )/{
(u(0)i )[1 −
(u(0)i )]}, where ψ(·) = 
 ′(·) is the PDF of the ran-
dom variable. We obtain θ (1) and γ (1) by (21) and (26), respectively. By (16)
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and (17), if t ≥ 1, then w(t)i = miψ
2(η

(t)
i )/{
(η(t)i )[1 −
(η

(t)
i )]} and u(t)i = η

(t)
i + [yi −

mi
(η
(t)
i )]/[miψ(η

(t)
i )], where η

(t)
i is given by (15).

If the cloglog link is used, then (2) becomes

log[− log(1 − πi)] = ηi = x�
i β + z�

i γ , 1 = 1, . . . , n. (29)

Following the traditional IRWLS, we have u(0)i = log{− log[(mi − yi + 0.5)/(mi + 1)]}
and w(0)i = mi[(mi − yi + 0.5)/(yi + 0.5)] log2[(mi − yi + 0.5)/(mi + 1)]. If t ≥ 1, then

w(t)i = mie2η
(t)
i −eη

(t)
i
/(1 − e−eη

(t)
i
) and u(t)i = η

(t)
i + (yi − ni + nie−eη

(t)
i
)/(mieη

(t)
i e−eη

(t)
i
),

where η(t)i is given by (15).
For Poisson data, we assume that yi ∼ P(μi) independently given γ , where g(·) in (2)

is the log link. Then, (2) becomes

log(μi) = ηi = x�
i β + z�

i γ , 1 = . . . , n. (30)

Following the traditional IRWLS, we have u(0)i = log(yi + 0.5) and w(0)i = yi + 0.5. Then,
we can obtain θ (1) and γ (1). If t ≥ 1, then wi = eη

(t)
i and u(t)i = η

(t)
i + (yi − eη

(t)
i )/eη

(t)
i .

We have demonstrated that IRWLSR can be used to GLMMs for binomial and Poisson
data, where the entire computation does not need any numerical evaluations of intractable
integrals. Therefore, our IRWLSR can be used to fit GLMMs for binomial or Poisson data
even if q is large in (4). Since the general implementation of the IRWLSR does not rely
on the distribution of the response and the link function, this conclusion holds for any
GLMMs with arbitrary reasonable link functions. Although we have provided the method
to compute θ̂ , we have not provided a method to compute its variance–covariance matrix
yet. This is related to the derivation of the Fisher information.

3.3. Fisher information

We use the Fisher information of θ (t+1) to approximate the variance-covariance matrix of
θ̂ , where θ (t+1) is the MLE of θ for (19) for a given t. We treat it as the working Fisher
information given by IRWLSR. We study properties of the working Fisher information
in the case when random effects are absent. We find that the working Fisher information
approaches the true Fisher information if the algorithm for IRWLSR converges.We provide
our results below.

Proposition 3.2: Let I(t)(θ) be the Fisher information of θ (t+1) given by (19) and I(θ) be
the Fisher information of θ̂ in the model given by (1), (2) and (3). If all assumptions of Pro-
portion 3.1 holds, then I(t)(θ0) converges to I(θ0) in probability as n → ∞ if the algorithm
for IRWLSR converges.

Proof: The conclusion can be proven by the same method in the proof of Proposition 3.1.
�

The Fisher information I(t)(θ) for (19) can be easily derived. In particular, we calculate
the second-order partial derivatives of �(t)(θ) given by (20) with respect to β , σ 2 and δ.
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We then take negative expected values of the second-order partial derivatives. In the end,
we obtain

I(t)(θ) =
⎛
⎝Iβ(θ) 0 0

0 Iσ 2(θ) Iσ 2δ(θ)
0 Iδσ 2(θ) Iδ(θ)

⎞
⎠ , (31)

where Iβ(θ) = X�R−1
δ X/n, Iσ 2(θ) = 1/(2σ 4), the jth component of Iσ 2δ(θ) is tr[R

−1
δ

(∂Rδ/∂δj)]/(2nσ 2), and the (j1, j2)th entry of Iδ(θ) is tr[R−1
δ (∂R−1

δ /∂δj1)R
−1
δ (∂R−1

δ /

∂δj2)]/(2n) for all j, j1, j2 ∈ {1, . . . , r}. By Proposition 3.2, we approximate I(θ) by I(t)(θ)
if the algorithm converges, implying that we can use {I(t)(θ)}−1 for a sufficiently large t
to approximate the variance-covariance matrix of θ̂ . Because the Fisher-scoring algorithm
converges fast, t is usually small (e.g. t ≤ 50).

Corollary 3.1: Suppose that all assumptions of Proposition 3.1 hold. Let I(θ) be the matrix
converged by I(t)(θ) for sufficiently large t. If I(θ0) is positive definite, then

√
n(θ̂ − θ0)�

N [0, I−1(θ0)] as n → ∞. If I(θ0) is not positive definite, a similar result can be derived if
the generalized inverse of I(θ0) is used.

Proof: The conclusion can be directly implied by Propositions 3.1 and 3.2. �

4. Specification

We specify our method to two kinds of GLMMs. The first is longitudinal data for count.
This problem has been well addressed by the Laplace approximation and the MCMC
algorithm. The reason is that the dimension of the intractable integral given by (6) is usu-
ally low. The second is spatial data for count. This is a difficult problem since the dimension
of the intractable integral given by (6) is often equal to the sample size. Since our method
does not need to evaluate the intractable integral, it is not affected by the dimension.

4.1. Longitudinal data

We specify our method to GLMMs under the framework of repeated measurements. Lon-
gitudinal data sets are derived if repeated measures are recorded over a period of time.
Repeated measurement data sets consist of repeated observations of a response variable
and a set of explanatory variables for individual subjects. Individual subjects are called
clusters. Dependence between clusters is ignored. Thus, only the covariance within clus-
ters is needed. The covariance structure is accounted for by a statisticalmodel with random
effects. A common method is to assume that the random effects are independent between
clusters.

Suppose that a longitudinal data set for count has K clusters. Let yk = (yk1, . . . , yknk)
�

for k ∈ {1, . . . ,K} be independent random vectors with the distribution of yki given
by f (yki) = exp[{ykiωki − b(ωki)}/a(φ)+ c(yki,φ)]. The total sample size of the data is
n = ∑K

k=1 nk. The response vector of the entire data is y = (y�
1 , . . . , y

�
K )

�. Suppose that
the conditional mean of yki is modelled by g(μki) = x�

kiβ + z�
kiγ k, where μki = b′(ωki)

and the γ ks are iid N (0,Vδ). Let μk = (μ1, . . . ,μknk)
�, Xk = (xk1, . . . , xknk)

�, Zk =
(zk1, . . . , zknk)

�, X = (X�
1 , . . . ,X

�
K )

�, Z = diag(Z1, . . . ,ZK), μ = (μ�
1 , . . . ,μ

�
K )

�, and
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γ = (γ �
1 , . . . , γ

�
K )

�. Then, the GLMM can be expressed as g(μ) = Xβ + Zγ and γ ∼
N {0, diagK(Vδ)}, where diagK(Vδ) is a diagonal matrix obtained by repeatingVδ K times.
For each specific k, the model is

g(μk) = X�
k β + Zkγ k, (32)

where γ k ∼ N (0,Vδ) independently.
Assume that θ (t) and γ (t) have been obtained in the tth iteration. Then, (15) becomes

η
(t)
ki = x�

kiβ
(t) + z�

kiγ
(t)
k , where γ

(t)
k is the predicted value of γ k given by the tth itera-

tion, implying that we can carry out (16) and (17) to compute w(t)ki and u(t)ki , the working
weight and response of the ith record in kth cluster, respectively. The working model
becomes u(t)k = Xkβ + Zkγ k + εk for k ∈ {1, . . . ,K}, where u(t)k = (u(t)k1 , . . . , u

(t)
knK )

�, and
εk ∼ N (0, σ 2{W(t)

k }−1) independently, whereW(t)
k = diag(w(t)k1 , . . . ,w

(t)
knk
).

To carry out the next iteration, we need θ (t+1) and γ
(t+1)
k for all k ∈ {1, . . . ,K}. It relies

on the maximum-likelihood approach to

u(t)k = Xkβ + Zkγ k + εk, k = 1, . . . ,K, (33)

where εk ∼ N (0, σ 2{W(t)
k }−1) independently. Note that (33) is a weighted normal model

for longitudinal data. The computation has been well addressed. Numerical algorithms for
the MLE of (33) can be found in many software packages (e.g. lme4 in R or the proc glim-
mix in SAS). Bymigrating those to IRWLSR, we can derive theMLEs for any GLMMswith
any reasonable link functions, including the GLMMs for binomial or Poisson longitudinal
data.

4.2. Spatial data

A spatial GLMM for count is developed by hierarchical GLMs for count with spatially
correlated or autocorrelated random effects. It contains at least two hierarchies. The first
hierarchy specifies a spatial GLM for count given the random effects. The second hierar-
chy specifies the distribution of the random effects. To incorporate spatial correlation or
autocorrelation, we specify Vδ in (3) by spatial models, including the geostatistical [5],
conditional autoregressive (CAR) [17,18] and spatial autoregressive (SAR) [19] models.

Suppose that a study region has been partitioned into n spatial units. Let yi be the
response for count and xi = (1, xi1, . . . , xi(p−1))

� be the vector of explanatory variables
collected from the ith unit, for all i ∈ {1, . . . , n}. A spatial GLMM is

g(μi) = ξi + x�
i β + γi, i = 1, . . . , n, (34)

where γi is the ith component of γ and ξi is an offset term, which is related to at-risk
population size if the Poisson spatial GLMM is used [20,21].

The variance–covariance matrix Vδ in (3) is defined by spatial models. If the geosta-
tistical model is used, then Vδ is constructed by a stationary covariance function, leading
to the (i, j)th entry of Vδ as vij,δ = cδ(dij) for all i, j ∈ {1, . . . , n}, where dij is the differ-
ence between the locations of units i and j and cδ(·) is a stationary covariance function.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 13

To ensure Vδ to be positive definite, a parametric model of cδ(·) is used. One of the most
popular models is the Matérn defined by

cδ(d) = δ1
(δ2‖d‖)δ3
2δ3−1�(δ3)

Kδ3(δ2‖d‖), (35)

whered is the difference between locations, δ = (δ1, δ2, δ3)� is a three-dimensional param-
eter vector, Kδ3(·) is a modified Bessel function of the second kind, δ1, δ2 and δ3 are
variance, scale and smoothness parameters, respectively. The Matérn family is isotropic in
space. It contains the exponential covariance function as a special case given by δ3 = 0.5.
The model was first proposed by Matérn [22] and has received more attention since some
theoretical work by Handcock and Stein [23] and Stein [24]. A nice review and discus-
sion on Matérn family is given by Guttorp and Gneiting [25]. The Matérn family has been
used [26,27]. In addition to the geostatistical model, one can use the CAR or SAR models.
Both of them use neighbouring information to define Vδ . Both has δ = (δ1, δ2)�, where δ

is a two-dimensional parameter vector.
In all of the three spatial GLMMs for count, based on θ (t) and γ (t) given by the previous

iteration, we can express (15) as η(t)i = x�
i β + γ

(t)
i for all i ∈ {1, . . . , n}, where γ (t)i is the

ith component of γ (t). We use (16) and (17) to compute w(t)i and u(t)i for all i ∈ {1, . . . , n}.
The working model becomes u(t) = Xβ + γ + ε, where ε ∼ N (0, σ 2{W(t)}−1). To carry
out the next iteration, we need to numerically solve themaximum likelihood for the spatial
linear model for normal data as

u(t) = Xβ + γ + ε, (36)

where the variance matrix of γ is given by a spatial model, ε ∼ N (0, σ 2{W(t)}−1) is the
error vector, and γ and ε are independent. The MLE of (36) can be solved by the profile
maximum-likelihood approach given by Appendix A.

5. Simulation

We carried out simulation studies to evaluate the performance of the IRWLSR for binomial
and Poisson data.We evaluated the performance for binomial data under the framework of
longitudinal studies, where the dimension of the intractable integral given by (4) was low.
We considered two link functions: the logistic and inverse CDF links.We selected the logis-
tic link because of its popularity. As logistic models in longitudinal studies can be fitted by
many software packages, we compared our results with those given by the glmer function
in the lme4 package of R. We selected the inverse CDF link because we wanted to demon-
strate the flexibility of our method. We examined the existing inverse CDF links used by
the lme4 and found that it did not contain the CDF of the t-distribution. Then, we decided
to use this link to demonstrate the flexibility of IRWLSR. We studied Poisson data because
wewanted to demonstrate the feasibility of ourmethodwhen high-dimensional intractable
integral was present in the likelihood function. We chose the spatial Poisson model with
the covariance matrix of γ given by the exponential covariance function in (34), which
was derived by taking δ3 = 0.5 in (35). The dimension of the intractable integral in the
likelihood function was equal to the sample size. It was hard to implement the Laplace
approximation or the MCMC algorithm, but our IRWLSR could still be applied.
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5.1. Logistic model

We assumed that the logistic GLMM for binomial data was applied to a longitudinal study
with identical cluster sizes. Let K be the number of clusters and m be their sizes. For
each selected K and m, we assumed that yki for all k ∈ {1, . . . ,K} and i ∈ {1, . . . ,m} were
conditionally independent Bernoulli random variables with πki given by

log
πki

1 − πki
= β0 + β1xki1 + β2xki2 + β3xki3 + γk0 + γk1xki = x�

kiβ + z�
kiγ k, (37)

where xki = (1, xki1, xki2, xki3)� represented explanatory vectors for fixed effects, zki =
(1, xki1)� represented explanatory vectors for random effects, β = (β0,β1,β2,β3)� rep-
resented the parameter vector for fixed effects, γ k = (γk0, γk2)� represented vectors for
random effects. We generated xki1, xki2 and xki3 independently from N (0, 0.52), and γ k
independently from N (0,V), where V was 2 × 2 matrix for variance components. We
generated yki conditionally independently from (37) with fixedβ0 = 0, β1 = 0.5, β2 = 0.4,
β3 = 0.3, v00 = v11 = 0.52 and v01 = v10 = 0.1, where vj1j2 was the (j1 + 1, j2 + 1)th entry
of V.

We implemented IRWLSR to the logistic linearmixed effectsmodel given by (27) for the
data. Following the traditional IRWLS, we chose the initial working response and weight
values as u(0)ki = log[(yki + 0.5)/(1.5 − yki)] andw

(0)
ki = (yki + 0.5)(1.5 − yki)/4 for all k ∈

{1, . . . ,K} and i ∈ {1, . . . ,m}, respectively. We modified (18) as

u(t)k = Xkβ + Zkγ k + εk (38)

where Xk = (x�
k1, . . . , x

�
km)

�, Zk = (z�
k1, . . . , z

�
km)

�, γ k ∼iid N (0,V), and εk ∼ind

N (0, {W(t)
k }−1) withW(t)

k = diag(w(t)k1 , . . . ,w
(t)
km) for all k ∈ {1, . . . ,K}.

We used the lmer function in the lmer4 package of R to fit (38). It provided θ (t+1) =
(β(t+1)}�,V(t+1)), where β(t+1) andV(t+1) were theMLEs of β andV under (38).We then
modified (26) as

γ
(t+1)
k = V(t+1)Z�

k M
(t+1)
k u(t) (39)

for all k ∈ {1, . . . ,K}, where M(t+1)
k = {R(t+1)

k }−1 − {R(t+1)
k }−1Xk(X{R(t+1)

k }−1X�)−1

Xk{R(t+1)
k }−1 and R(t+1)

k = ZkV(t+1)Z�
k + {W(t)

k }−1.
By taking t = 0 in (38) and (39), we obtained θ (1) and γ

(1)
k . If t ≥ 1, then we defined

η
(t)
ki = x�

kiβ
(t) + z�

kiγ
(t)
k , π(t)ki = eη

(t)
ki /(1 + eη

(t)
ki ), w(t)ki = π

(t)
ki (1 − π

(t)
ki ), and u(t)ki = η

(t)
ki +

(yki − π
(t)
ki )/[π

(t)
ki (1 − π

(t)
ki )], for all k ∈ {1, . . . ,K} and i ∈ {1, . . . ,m}. We then carried

out the next integration. This meant that our entire method could be employed. In
the end, we obtained β̂ and V̂, the MLEs of β and V. The result was denoted by θ̂ =
(θ̂0, θ̂1, θ̂2, θ̂3, θ̂4, θ̂5, θ̂6)� = (β̂0, β̂1, β̂2, β̂3, v̂00, v̂01, v̂11)�.

We simulated 1000 data sets from (37) for each selected m and K. To evaluate the
performance of the IRWLSR, we computed the MSE values for each component of θ̂ by

MSE(θ̂j) = 1
1000

1000∑
�=1

(θ̂j,� − θj0)
2, (40)
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Table 1. Simulations (with 1000 replicates) for root MSEs of the MLEs given by our IRWLSR for selected
m and K in the logistic mixed effects model.

θ̂

m K β0 β1 β2 β3 v00 v01 v11

10 100 0.077 0.141 0.136 0.137 0.099 0.107 0.218
200 0.057 0.104 0.094 0.097 0.070 0.078 0.162
500 0.036 0.068 0.062 0.060 0.045 0.052 0.116
1000 0.025 0.053 0.046 0.044 0.035 0.040 0.093

20 100 0.067 0.107 0.093 0.092 0.068 0.071 0.146
200 0.048 0.077 0.068 0.069 0.050 0.051 0.106
500 0.030 0.054 0.043 0.043 0.034 0.036 0.076
1000 0.021 0.042 0.032 0.032 0.028 0.027 0.060

Table 2. Simulations (with 1000 replicates) for the ratio of the root MSEs of the MLEs (θ̂ and θ̂ LA) given
by our IRWLSR and Laplace approximation methods, respectively, where the Laplace approximation is
carried out by the glmer function in the lme4 package of R.

[MSE(θ̂)/MSE(θ̂ LA)]1/2

m K β0 β1 β2 β3 v00 v01 v11

10 100 0.956 0.958 0.964 0.960 0.932 0.883 0.943
200 0.959 0.967 0.975 0.967 0.932 0.890 0.943
500 0.960 1.038 1.015 0.974 0.934 0.938 0.844
1000 0.963 1.039 1.046 1.015 0.932 1.021 0.739

20 100 0.968 0.978 0.970 0.969 0.954 0.898 0.922
200 0.968 1.008 0.984 0.977 0.968 0.910 0.917
500 0.969 1.066 1.029 0.981 1.028 0.970 0.879
1000 0.972 1.095 1.051 1.028 1.101 1.046 0.854

where θ̂j,� was the estimate of θj from the �th data set and θj0 was the true value of the jth
component of θ . The results are given in Table 1. We found that the root MSE values were
small comparing to their true values. TheMSE values decreased as eitherm orK increased.
This was expected because n increased if eitherm or K increased.

We next compare our method and the traditional Laplace approximation method. We
compared MSEs of θ̂ given by IRWLSR with those of θ̂LA, where θ̂LA was given by the
Laplace approximation based on the glmer function in the lme4 package of R. The MSEs
of θ̂LA were derived similarly as those of θ̂ given by (40). We computed ratios of root MSEs
of each component of θ̂ and θ̂LA (Table 2). Since most of the ratios were less than one, we
conclude that IRWLSR is more efficient than Laplace approximation.

5.2. Inverse CDFmodel

We assumed that the GLMM for binomial data with the inverse CDF link was applied to
a longitudinal study with identical cluster sizes. We assumed that the response variable yki
for all k ∈ {1, . . . ,K} and i ∈ {1, . . . ,m}were conditionally independent Bernoulli random
variables with πki given by


−1(πki) = β0 + β1xki1 + β2xki2 + β3xki3 + γk0 + γk1xki = x�
kiβ + z�

kiγ k, (41)

where xki, zki, β and γ k represented those given by (37), respectively. We used the same
β and V to generate xki and γ k. After that, we generated yki conditionally independent
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Table 3. Simulations (with 1000 replicates) for root MSEs of the MLEs given by the IRWLSR for selected
m and K in the inverse CDFmixed effects model, where the link is the inverse CDF of the t10 distribution.

θ̂

m K β0 β1 β2 β3 v00 v01 v11

10 100 0.063 0.114 0.093 0.089 0.099 0.070 0.141
200 0.045 0.090 0.070 0.065 0.071 0.053 0.096
500 0.027 0.072 0.055 0.047 0.054 0.037 0.057
1000 0.020 0.066 0.046 0.040 0.044 0.031 0.039

20 100 0.055 0.090 0.067 0.062 0.056 0.051 0.099
200 0.038 0.071 0.053 0.048 0.042 0.036 0.067
500 0.023 0.058 0.039 0.034 0.031 0.026 0.047
1000 0.017 0.054 0.034 0.028 0.028 0.023 0.037

from (41), where we chose 
(·) as the CDF of the t10-distribution. We used this link
because it was not included in the lme4 package. The aim is to demonstrate that our
method can be easily implied to any GLMMs with arbitrary links.

Following the traditional IRWLS, we chose initial working response and weight val-
ues as u(0)ki = 
−1[(yki + 0.5)/2] and w(0)ki = ψ2(u(0)ki )/{
(u(0)ki )[1 −
(u(0)ki )]}, for all
k ∈ {1, . . . ,K} and i ∈ {1, . . . ,m}, where ψ(·) was the PDF of the t10-distribution. We
obtained (38) and (39). By taking t = 0, we obtained θ (1) and γ

(1)
k for all k ∈ {1, . . . ,K}.

If t ≥ 1, then we defined η(t)ki = x�
kiβ

(t) + z�
kiγ

(t)
k , w(t)ki = ψ2(η

(t)
ki )/{
(η(t)ki )[1 −
(η

(t)
ki )],

and u(t)ki = η
(t)
ki + [yki −
(η

(t)
ki )]/ψ(η

(t)
ki ). We obtained the next iteration. This meant that

our method was applied. In the end, we obtained β̂ and V̂, the MLEs of β and V by
IRWLSR. We denoted them by θ̂ = (β̂0, β̂1, β̂2, β̂3, v̂00, v̂01, v̂11)�.

We simulated 1000 data sets from (41) for selectedm andK. To evaluate the performance
of the IRWLSR, we also computed the MSE values for each component of θ̂ by a formula
similar to (40). The results are given in Table 3. We still found that the root MSE values
were small comparing to their true values, and they decreased as eitherm or K increased.

5.3. Spatial poissonmodel

We assumed that the GLMM for Poisson data with the log link was applied to spatial sta-
tistical data set with n spatial units. Each unit was represented by a point in the study
region. We used a K × K lattice to represent these points. The K × K lattice contained
n = K2 points. The coordinates of these points were (i1, i2) for all i1, i2 ∈ {1, . . . ,K},
respectively. Thus, the difference and the distance between the ith and jth units were
dij = (j1 − i1, j2 − i2) and dij = ‖dij‖ = [(j1 − i1)2 + (j2 − i2)2]1/2, respectively. We used
dij to define theMatérn covariance function given by (35). Following [28], we fixed δ3 = 0.5
such that the covariance function became cδ(d) = δ1e−δ2d, where d = ‖d‖ was the dis-
tance between point locations, and δ = (δ1, δ2)� is a two-dimensional parameter vector to
be estimated by our approach.

For each selected K, we assumed that yi for all i ∈ {1, . . . , n} were conditionally inde-
pendent Poisson random variables with μi given by

logμi = logmi + β0 + β1xi + γi = logmi + x�
i β + γi, (42)
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wheremi was the at-risk population size, leading to ξi = logmi in (34), β0 and β1 were the
parameters for fixed effects, γi were the normally distributed random effects, xi = (1, xi)�,
and β = (β0,β1)�. The covariance between the random effects was given by Cov(γi, γj) =
δ1e−δ2dij for all i, j ∈ {1, . . . , n}.

We generated mi independently from P(νi) with νi = 2 × 104 in the previous [K/2]
rows and νi = 104 in the remaining rows, where [·] is the function of the integer part. For
each selected K, we generated xi independently from N (0, 0.52) and γ from N (0,Vδ),
where Vδ was an n × n matrix for variance components, and the (i, j)th entry of Vδ was
Cov(γi, γj). We then generated yi conditionally independently from (42) with fixed β0 =
−5.0 and β1 = 0.5.

We implemented IRWLSR to (42). According to traditional IRWLS, we chose u(0)i =
log(yi + 0.5)− logmi and w(0)i = yi + 0.5. We obtained a working model as

u(t) = Xβ + γ + ε, (43)

where γ = (γ1, . . . , γn)� was the vector of spatial random effects, ε ∼ N (0, σ 2{W(t)}−1)

was the error vector, and W(t) = diag(w(t)1 , . . . ,w(t)n ) was the working weight matrix. For
the next iteration, we numerically calculated the MLEs of θ = (β0,β1, δ1, δ2)� and σ 2

given by (43), where we treated σ 2 as a nuisance parameter.
We used the profile maximum-likelihood approach to fit (43). Since the optimization

problem given by (25) only involved two parameters, the computation was fast. By tak-
ing t = 0 in (43), we obtained θ (1) and γ (1). If t ≥ 1, then we defined η(t)i = x�

i β(t) +
γ
(t)
i − logmi, w

(t)
i = mieη

(t)
i , and u(t)i = η

(t)
i − (yi − w(t)i )/w

(t)
i . In the end, we obtained

θ̂ = (β̂0, β̂1, δ̂1, δ̂2)� by IRWLSR.
We simulated 1000 data sets from (42) for selected δ1, δ2 and K. To evaluate the per-

formance of IRWLSR, we computed the MSE values for each component of θ̂ . The results
are given in Table 4. We found that the root MSE values were significantly affected by K,
δ1, and δ2 values. The root MSE values decreased as K increased. This was expected as the
sample size increased with K.

Table 4. Simulations (with 1000 replicates) for root MSEs of the MLEs given by the IRWLSR for selected
K, δ1 and δ2 in the spatial Poisson mixed effects model, where β0 = −5.0 and β1 = 0.5.

θ̂

K δ1 δ2 β0 β1 δ1 δ2

15 0.1 0.5 0.077 0.032 0.072 0.144
1.0 0.052 0.036 0.060 0.169

0.2 0.5 0.134 0.037 0.156 0.140
1.0 0.068 0.055 0.112 0.184

20 0.1 0.5 0.063 0.023 0.061 0.111
1.0 0.035 0.032 0.048 0.140

0.2 0.5 0.099 0.029 0.098 0.097
1.0 0.055 0.042 0.106 0.150

25 0.1 0.5 0.054 0.018 0.038 0.095
1.0 0.031 0.023 0.040 0.123

0.2 0.5 0.082 0.021 0.073 0.078
1.0 0.046 0.032 0.098 0.124
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6. Application

Weapplied ourmethod to theGuangxi infantmortality data set, whichwas previously ana-
lyzed by Zhang and Lin [29]. Guangxi is one of five autonomous ethnic provinces regions
in China. The province contains 110 counties. The total area is about 236,000km2. The
total population size was about 49.6 million in 2020.

We obtained the county-level infant birth and death counts from the 2000 Census in
China. The data set contained 14,508 total infant mortality and 603,910 total infant birth
counts. The province-level infant mortality rate was 2402 per 100,000. The county-level
infant mortality rates varied substantially between counties. The lowest rate was 248 per
100,000 at Jiangnan Qu, which was close to the capital city of the province. The highest
rate was 7260 per 100,000 at Shangsi Xian, which was close to the border between China
and Vietnam. The county-level elevation varies from 20 to 1140metres above sea level. The
value was low in the southeastern area but high in the western and northwestern area. As
it was highly correlated with medical and socioeconomic resources, we treated elevation
as an important explanatory variable. To confirm this, we carried out an initial study via a
loglinear model for Poisson data as

logμi = logmi + β0 + β1xi, (44)

where μi was the expected value of the county-level infant morality count, yi was the
observed value of the county-level infant morality count, mi was the county-level infant
birth, and xi was the county-level elevation value. We fitted (44) by a standard R pack-
age. We had β̂0 = −3.9774 and β̂1 = 0.8498 with standard errors s(β̂0) = 0.0133 and
s(β̂1) = 0.0329, respectively, indicating that elevation was important (Figure 1).

A significant defect of the previous analysis [29] was the ignorance of spatial depen-
dency. Themain reasonwas the difficulty in the computation of theMLEs in spatial Poisson
models for count, where the dimension of the intractable integral in the likelihood func-
tion given by (4) was equal to the sample size. This difficulty was completely overcome by
IRWLSR. In particular, we added a spatial random effect in (44), such that it became (42).
We used the Matérn covariance function given by (35) to model the dependence between
the random effects, where the distance was given by kilometres. We used the methods
given by Sections 3.2 and 3.3 to compute theMLEs ofmodel parameters and their standard
errors, respectively.

We considered two cases in the implementation of the model. In the first case, we
fixed δ3 = 0.5.We had δ = (δ1, δ2)�, and θ = (β0,β1, δ1, δ2)�. We obtained β̂0 = −4.017,
β̂1 = 0.966, δ̂1 = 0.0190 and δ̂2 = 0.0196.We calculated their standard errors by the Fisher
information given by (31). We obtained s(β̂0) = 0.142, s(β̂1) = 0.262, s(δ̂1) = 0.0096 and
s(δ̂2) = 0.0074, respectively. All of themwere significant based on their p-values. In the sec-
ond case, we treated δ3 as a parameter. We estimated it. We had δ = (δ1, δ2, δ3)� and θ =
(β0,β1, δ1, δ2, δ3)�. As we found that δ̂3 was extremely large (≥ 100), we roughly treated it
as infinity, leading to the Gaussian covariance function in (4). Then, we had β̂0 = −4.016,
β̂1 = 0.979, δ̂1 = 0.0136 and δ̂2 = 0.359.We calculated their standard errors and obtained
s(β̂0) = 0.122, s(β̂1) = 0.245, s(δ̂1) = 0.0062 and s(δ̂2) = 0.0636, respectively. We studied
the difference between the two cases by the likelihood ratio test. The value of the likelihood
ratio statistic was 2.71. It was insignificant based on the χ2

1 -approximation. Therefore, we
could use δ3 = 0.5, indicating that the exponential covariance function was acceptable.
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Figure 1. County-level infant mortality rates in Guangxi, China, 2000.

We also investigated two well known previous methods. To implement the Laplace
approximation, we studied numerical issues for b̂θ given by (6) for each candidate θ . We
needed to solve the optimization problem for a 110-dimensional parameter. We checked
the eigenvalues of the Hessian matrix of the objective function used in the Laplace approx-
imation at different values of θ . We found the Hessian matrix was not always negative
definite. We concluded that the objective function might contain many local optimizers.
This made it difficult to compute b̂θ in (6) since b̂θ must be the global maximizer. In addi-
tion, even if b̂θ could be successfully derived, according to [8], the Laplace approximation
approach might contain serious bias because the dimension of the intractable integral was
not o(n1/3). In the MCMC, we wanted to update samples of θ and γ based on probability
values derived by the combination of a proposal function, and the previous and current
samples. We tried a number of proposal functions and all of them had high probabilities to
reject the new samples. In many cases, the MCMC provided a sample value with over 99%
and the rest sample values with lower than 1%. We investigated the reason and found that
the problem was caused by the dimension of γ . Then, we decided to try the Gibbs sam-
pler approach. To update individual parameter values, we needed to compute the inverse
and determinant of a 109-dimensional variance-covariance matrix in the conditional dis-
tribution of the current component of γ given the remaining components of γ . This was
extremely time-consuming.

7. Discussion

We propose iteratively reweighted least squares with random effects (IRWLSR) for MLEs
of generalized linear mixed effects models (GLMMs), which successfully overcomes
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the difficulty caused by high dimensional intractable integrals in fitting GLMMs for
non-normal data. An advantage is that the major computation and prediction are carried
out by a working linear mixed effects model (WWLMM) for normal data. The distribution
of the GLMM and the link function are only used in updating the working responses and
weights in theWWLMM. Since the entiremethod does not need any numerical evaluations
of intractable integrals, it can be easily implemented even if high-dimensional intractable
integrals appear in the likelihood function.

IRWLSR successfully reduces the computational burden of MLE of GLMMs for non-
normal data. The computational complexity is equal to that of LMMs for normal data.
Given that an algorithm for a specific LMM exists, we can modify it to MLEs of a corre-
sponding GLMM. Therefore, the important issue is to develop an efficient algorithm for
MLEs of LMMs for normal data but not GLMMs for non-normal data. This kind of prob-
lems has not been completely solved yet. An example is the geostatistical model for normal
data, displayed by (36). Although the likelihood function can be expressed by closed-forms,
the size of the variance–covariance matrix may be extremely large if the number of obser-
vations is only moderately large, leading to a difficulty in the computation of the MLEs of
a spatial statistical model for normal data. This problem has been previously studied by
many articles [28,30–33].

We believe that IRWLSR can be combined with hierarchical generalized linear model
(HGLM) for count data. Assume that many hierarchical levels are involved. The first level
is given by a GLM. The second level is given by normally distributed random effects with
parameters to be modelled by other levels. Note that the HGLM becomes a GLMM for
count data given parameters of the second level. We can use IRWLSR to estimate the con-
ditional MLEs of model parameters given parameters of the second level. Then, we can
study the HGLM based on the working normal model given by IRWLSR, indicating that
it is possible to use tools for normal data to study models for non-normal data. This is left
to future research.
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Appendix 1. Maximum likelihood for LMMs

Let u be the n-dimensional response, X be the n × p-dimensional design matrix for fixed effects, Z
be the n × q-dimensional design matrix for random effects. A general LMM can be expressed as

u = Xβ + Zγ + ε,

where γ ∼ N (0, σ 2Bδ) and ε ∼ N (0, σ 2W) are independent,W is a knownweightmatrix, and δ =
(δ1, . . . , δr)� is an r-dimensional parameter vector for the variance-components. The log-likelihood
function of the model is

�(β , σ 2, δ) = −n
2
log(2π)− n

2
log σ 2 − 1

2
| det(Rδ)| − 1

2σ 2 (u − Xβ)�R−1
δ (u − Xβ),

where Rδ = ZBδZ� + W−1. Given δ, the conditional MLE of β is β̂δ = (X�R−1
δ X)−1X�R−1

δ u
and the conditional MLE of σ 2 is σ̂ 2

δ = u�Mδu/n, whereMδ = R−1
δ − R−1

δ X(X�R−1
δ X)−1X�R−1

δ .
Putting these into the expression of the log-likelihood function, we obtain the profile log-likelihood
function of δ as

�P(δ) = −n
2

[
1 + log

(
2π
n

)]
− 1

2
log | det(Mδ)| − n

2
log(u�Mδu).

For any k ∈ {1, . . . , r}, we have
∂�P(δ)

∂δk
= −12tr

(
R−1

δ ∂Rδ∂δk
)+ n2u�Mδ∂Rδ∂δkMδuu�Mδu.

For any k1, k2 ∈ {1, . . . , r}, we have
∂2�P(δ)

∂δk1∂δk2
= −1

2
tr
(
R−1

δ

∂2Rδ

∂δk1∂δk2

)
+ 1

2
tr
(
R−1

δ

∂Rδ

∂δk1
R−1

δ

∂Rδ

∂δk2

)

+ n
2

u�Mδ
∂2Rδ

∂δk1∂δk2
Mδu

u�Mδu
+ n

2

(
u�Mδ

∂Rδ

∂δk1
Mδu

)(
u�Mδ

∂Rδ

∂δk2
Mδu

)
(u�Mδu)2

− n
2

u�Mδ

(
∂Rδ

∂δk1
Mδ

∂Rδ

∂δk2
+ ∂Rδ

∂δk1
Mδ

∂Rδ

∂δk2

)
Mδu

u�Mδu
.

Therefore, we can implement the Newton–Raphson algorithm to compute the maximizer of �P(δ),
which provides the MLE of δ, denoted by δ̂. The MLEs of β and σ 2 are derived by β̂ = β̂

δ̂
and

σ̂ 2 = σ̂ 2
δ̂
, respectively.

After θ̂ is derived, we predict γ by its conditional mean given u. By V(u|γ ) = σ 2W−1 and
V(γ ) = σ 2Bδ , we have (

γ

u

)
∼ N

[(
0
Xβ

)
, σ 2

(
Bδ BδZ�
ZBδ Rδ

)]
.

Because Cov[γ − BδZ�R−1
δ (u − Xβ), u] = 0, we conclude that γ − BδZ�R−1

δ (u − Xβ) and u are
independent. By E[γ − BδZ�R−1

δ (u − Xβ)] = 0 and Cov[γ − BδZ�R−1
δ (u − Xβ)|u] = σ 2(Bδ −

BδZ�R−1
δ ZBδ), we obtain γ |u ∼ N [BδZ�R−1

δ (u − Xβ), σ 2(Bδ − BδZ�R−1
δ ZBδ)]. Thus, we pre-

dict γ by
γ̂ = BδZ�Mδu.
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