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a b s t r a c t

Generalized k-means can be combined with any similarity or dissimilarity measure
for clustering. Using the well known likelihood ratio or F-statistic as the dissimilarity
measure, a generalized k-means method is proposed to group generalized linear models
(GLMs) for exponential family distributions. Given the number of clusters k, the proposed
method is established by the uniform most powerful unbiased (UMPU) test statistic
for the comparison between GLMs. If k is unknown, then the proposed method can be
combined with generalized liformation criterion (GIC) to automatically select the best
k for clustering. Both AIC and BIC are investigated as special cases of GIC. Theoretical
and simulation results show that the number of clusters can be correctly identified by
BIC but not AIC. The proposed method is applied to the state-level daily COVID-19 data
in the United States, and it identifies 6 clusters. A further study shows that the models
between clusters are significantly different from each other, which confirms the result
with 6 clusters.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Generalized k-means, including both k-means and k-medians as special cases, can be incorporated with any similarity
or dissimilarity measure for grouping objects. The similarity or dissimilarity measure can be very general. In this work, we
choose the dissimilarity measure as the well known likelihood ratio or F-statistic and the objects as statistical models for
xponential family distributions, such that the resulting method can be used to group generalized linear models (GLMs).
n particular, we assume that each object is composed by a vector for a response and a design matrix for explanatory
ariables, and a GLM has been established within each object. The linear component of the GLM provides the relationship
etween the expected value of the response and the explanatory variables within the objects. The significance of regression
oefficients for the explanatory variables is determined by the likelihood ratio statistic, which means that we can combine
he likelihood ratio test with the generalized k-means. The current research develops the method and uses it to group
he patterns for the state-level daily confirmed cases of COVID-19 in the United States.

The outbreak of COVID-19 has become a worldwide ongoing pandemic since March 2020. According to the website of
he World Health Organization (WHO), until January 31 2021, the outbreak has affected over 200 countries and territories
ith more that 100 million confirmed cases and 2 million deaths in the entire world. The most serious country is the
nited States. It has over 25 million confirmed cases and 440 thousand deaths. To understand the outbreak in the United
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States in the early period, we compare daily patterns of new cases in the fifty states and Washington DC until July 31
2020. We find that some of these patterns are similar to each other and some of these are far away from each other,
implying that we can carry out a clustering analysis to group these patterns. As statistical models are involved, we use the
generalized k-means. We adopt the likelihood ratio or F-statistic because it is induced by the standard uniformly most
powerful unbiased (UMPU) test for exponential family distributions. Based on theory of the UMPU test, the proposed
method should be more powerful than the convenient method based on k-means directly on regression coefficients. This
is confirmed by our simulation studies.

Clustering is one of the most popular unsupervised statistical learning methods for unknown structures. Clustering
methods are often carried out by similarity or dissimilarity measures between objects. Their goal is to group the objects
into a few clusters. The definition of objects can be very general. They can be observations, images, or statistical models.
The purpose of clustering is to make objects within clusters mostly homogeneous and objects between clusters mostly
heterogeneous. In the literature, one of the most well known clustering methods is the k-means. For objects from a
Euclidean space, the method assigns each of them to the cluster with the nearest mean. Based on a given k, it provides
k clusters according to k centers. The k centers are solved by minimizing the sum-of-squares (SSQ) criterion, formulated
by the Euclidean distance between the objects. Theoretically, the SSQ criterion in the k-means can be replaced by any
similarity or dissimilarity measure, leading to the generalized k-means (Bock, 2008; Soheily-Khah et al., 2016). Because
the choice of the dissimilarity measure is flexible, generalized k-means can be combined with any divergence measure,
including the UMPU test statistics.

Many clustering methods have been proposed in the literature. Examples include hierarchical clustering (Zhao and
Karypis, 2005), fuzzy clustering (Trauwaert et al., 1991), density-based clustering (Kriegel et al., 2001), model-based
clustering, and partitioning clustering. Model-based clustering is usually carried out by EM algorithms or Bayesian
methods under the framework of mixture models (Fraley and Raftery, 2002; Lau and Green, 2007). Partitioning clustering
can be interpreted by the centroidal Voronoi tessellation method in mathematics (Du and Wong, 2002). It can be further
specified to k-means (Forgy, 1965; Hartigan and Wong, 1979; Lloyd, 1982; MacQueen, 1967), k-medians (Charikar and
Guha, 2002), and k-modes (Goyal and Aggarwal, 2017), where k-means is the most popular. To implement those, one needs
to express observations of the data in a metric space, such that a distance measure can be defined. Several approaches
have been developed to specify the distance measure. A review of these can be found in Johnson and Wichern (2002),
p. 670.

Challenges appear in grouping daily patterns for the state-level COVID-19 data in the United States. Suppose that
the daily patterns have been fitted by statistical models (e.g., GLMs) with the response as daily confirmed cases and
explanatory variables as certain functions of time. The interest is to know whether models for individual states can
be grouped into a few clusters. At least, two other methods can be used. The first is the direct usage of an existing
clustering method on estimates of coefficients. A concern may arise because it is hard to address variability in estimates
of coefficients. The second is the usage of mixture models, which often leads to EM algorithms for mixture structures (Qin
and Self, 2006). Here, we propose another method. We use a likelihood ratio or an F-statistic as the dissimilarity measure
in the generalized k-means. Because they are formulated by the UMPU test, the resulting method should be more powerful
than any other method theoretically. To verify this, we compare our method with the other two methods by simulation
studies. We find that our method has lower clustering object error (OE) rates than our competitors.

We propose our method based on a known k at the beginning. When k is unknown, we use GIC to select the best k.
We specify it to both BIC and AIC. We find that BIC is more reliable than AIC in selecting number of clusters. Therefore,
we recommend using our BIC selector. To implement our method to the COVID-19 data in the United States, we have to
define an unsaturated clustering problem. In particular, we partition the coefficient vector into two sub-vectors. The first
sub-vector does not contain any information of time. Therefore, we only need to study the second sub-vector. The goal
is to know whether time variations between these models are similar. This problem can be partially reflected by Fig. 1.
Suppose that six regression lines are compared. The intercepts do not contain any time information. We allow them to vary
within clusters. We restrict the generalized k-means on the slopes only, leading to two clusters. Based on our intuition, we
believe that the unsaturated clustering problem can also be carried out by mixture models with EM algorithms. Because
our method is developed based on the UMPU test, it should be more powerful than any other methods.

The article is organized as follows. In Section 2, we propose our method. In Section 3, we study theoretical properties of
our method. In Section 4, we evaluate our method with the comparison to a few previous methods by simulation studies.
In Section 5, we implement our method to the state-level COVID-19 data in the United States. In Section 6, we provide a
discussion.

2. Method

We propose our method based on a known k in Section 2.1. The method is combined with GIC (Zhang et al., 2010)
to select the best k when k is unknown, and this is introduced in Section 2.2. In Section 2.3, we specify our method to
regression models for normal data and loglinear models for Poisson data. These models are treated as special cases of
GLMs. The loglinear model for Poisson data can be extended to models with overdispersion for quasi-Poisson data, and
this is used in analysis of the state-level COVID-19 data in the United States.
2
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Fig. 1. Generalized k-means clustering for six regression lines.

.1. Generalized k-means in GLMs

The goal of clustering is to partition a set of N objects, denoted by S = {z1, . . . , zN}, into several non-empty subsets
or clusters, such that the objects within clusters are mostly homogeneous and the objects between clusters are mostly
heterogeneous. If the objects are points from a Euclidean space, then the k-means can be used. It partitions S into k
distinct clusters denoted by C = {C1, . . . , Ck} with C given by

C = argmin
C

k∑
s=1

∑
i∈Cs

∥zi − cs∥2, (1)

here cs is the center of Cs. The right-hand side of (1) is called the SSQ criterion in the k-means. The generalized k means
s induced if the SSQ criterion is replaced by any similarity or dissimilarity measure. In particular, let d(z, C) be a selected
issimilarity measure with z representing an object and C representing a cluster. The generalized k-means solves C by

C = argmin
C

k∑
s=1

∑
i∈Cs

d(zi, Cs). (2)

f zi are points in a Euclidean space, then generalized k-means becomes the k-means by choosing d(zi, Cs) = ∥zi−cs∥2. This
can also be the k-medians if d(zi, Cs) = ∥zi − cs∥1 is used. Furthermore, the generalized k-means can also be implemented
by adding a penalty function in the SSQ criterion. This can induce the convex clustering problem studied by Chen et al.
(2016), Chi and Lange (2015), Lindsten et al. (2011) and Hocking et al. (2011) in the literature.

We find that d(z, C) in (2) can be specified as the UMPU test statistic for grouping statistical models. In this work,
we restrict our attention on GLMs for exponential family distributions, which can be linear models for normal data or
loglinear models for Poisson data. The task of our method is to group the GLMs into a number of clusters.

Suppose that zi contains a response vector y i = (yi1, . . . , yini )
⊤ and a design matrix Xi = (x⊤

i1, . . . , x
⊤

ini
)⊤, such that the

ample size of the entire data is n =
∑N

i=1 ni. In zi, yi1, . . . , yini are independently collected from an exponential family
istribution with the probability mass function (PMF) or the probability density function (PDF) as

f (yij) = exp
[
yijθij − b(θij)

a(φ)
+ c(yij, φ)

]
, (3)

where θij is a canonical parameter representing the location and φ is a dispersion parameter representing the scale. The
inear component ηij is related to explanatory variables by ηij = x⊤

ij βi. The link function g(·) connects µij = E(yij) = b′(θij)
nd ηij through

ηij = g(µij) = g[b′(θij)] = x⊤

ij βi, (4)

for all i ∈ {1, . . . ,N} and j ∈ {1, . . . , ni}, where θij = h(x⊤

ij βi) is the inverse function obtained by (4). In (3), there is
V(yij) = a(φ)v(µij), where v(µ) = b′′

{h−1
[g(µ)]} is the variance function. If the canonical link is used, then (4) becomes

ij = θij = g(µij) = x⊤

ij βi, implying that h(·) is the identity function.
The MLEs of βi, denoted by β̂i, can only be solved numerically if the distribution is not normal. A popular and well

nown algorithm is the iteratively reweighted least squares (IRWLS) (Green, 1984). The IRWLS is equivalent to the
3
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Fisher scoring algorithm. It is identical to the Newton–Raphson algorithm under the canonical link. After β̂i is derived, a
straightforward method is to estimate φ by moment estimation (McCullagh, 1983) as

a(φ̂) =
1
df

N∑
i=1

ni∑
j=1

(yij − µ̂ij)2

b′′[h(x⊤

ij β̂i)]
, (5)

here µ̂ij = b′
[h(x⊤

ij β̂i)] and df is the residual degrees of freedom. If φ is not present in (3), then (5) is not needed. This
occurs in Bernoulli, binomial, and Poisson models. The IRWLS is the standard algorithm for fitting GLMs, which has been
adopted by many software packages, such as R, SAS, and Python.

Our interest is to group βi into a few clusters, such that we have βi = βi′ if objects i and i′ are in the same cluster
or βi ̸= βi′ otherwise. The regression version of this problem has been previously investigated in gene expressions by an
EM algorithm for Gaussian mixture models (Qin and Self, 2006). Their interest is to know whether the entire coefficient
vectors can be partitioned into a few clusters. In our method, we allow a few components of βi to be different within
clusters. Therefore, we only need to partition the objects based on the remaining components.

Suppose that (4) is expressed as

ηij = x⊤

ij1βi1 + x⊤

ij2βi2, (6)

where xij = (x⊤

ij1, x
⊤

ij2)
⊤ and βi = (β⊤

i1, β
⊤

i2)
⊤. We want to know whether βi2 can be grouped into a few clusters, such that

we only need βi2 = βi′2 if objects i and i′ are in the same cluster or βi2 ̸= βi′2 otherwise. Based on a given C, our clustering
model is

g(µij) = x⊤

ij1βi1 + x⊤

ij2βs2, (7)

for zi ∈ Cs. We call (7) the unsaturated clustering problem. The saturated clustering problem is induced if βi1 is absent in (7).
As the choice of xij1 and xij2 is flexible in (7), our method can be used to group GLMs based on any arbitrary sub-vectors
of βi. In practice, the choice of βi1 and βi2 depends on interpretations or the interest of the applications. If no information
is provided, then we can simply study the saturated clustering problem.

The best measure for the difference between statistical models under (6) or (7) is the UMPU test statistic. The UMPU
test is optimal in finite samples for the comparison between two statistical models. It is also optimal in the simultaneous
comparison between many statistical models. The UMPU test is more powerful than any other method with the same
type I error probabilities. This motivates us to use the UMPU test statistic to define the similarity measure in (2).

We want to start with a nice initial C in our generalized k-means. We do not follow the usual k-means algorithms, as
they select the initial C randomly. Instead, we want to choose the initial C as heterogeneous as possible. This has been
previously used in the initialization of traditional k-means with observations from a Euclidean space based on a complete
weighted graph (Gonzalez, 1985). It has also been used in the initialization of the k-means++ proposed by Arthur and
Vassilvitskii (2007), who point out that k-means++ generally outperforms k-means with random initial centers in terms
of both accuracy and speed by substantial margins.

The goal of our initialization can be achieved by selecting k most dissimilar seeds first and then using them to generate
the entire initial C. We use a sequential approach to obtain the k seeds. At the beginning, we randomly choose the first
seed zi from S. We denote it as zi1 . We treat it as the seed for C1. To obtain the second seed zi2 for C2, we calculate the
UMPU test statistic for

H0 : βi = βi12 ↔ H1 : βi2 ̸= βi12, (8)

for any i ̸= i1. A larger value of the UMPU test statistic indicates more dissimilar between zi and zi1 . The UMPU test
statistic can be either a likelihood ratio or an F-statistic. It is the likelihood ratio statistic if φ is absent in (3) (e.g., in
binomial or Poisson regressions) or the F-statistic if φ is present (e.g., in linear regressions). We want zi2 to be the most
dissimilar to zi1 . This can be achieved by maximizing the tail distribution of the UMPU test statistic, which is equivalent
to minimizing the p-value. Therefore, the resulting zi2 has the lowest p-value in (8).

Now, we have two seeds zi1 and zi2 . We want to derive the third seed zi3 for C3. We cannot use the simple UMPU test
given by (8) to select zi3 . Then, we incorporate the minimax principle. For each i ̸= i1, i2, we calculate the UMPU test
statistic for

H0 : βi2 = βj2 ↔ H1 : βi2 ̸= βj2. (9)

For a given i, (9) contains two testing problems by taking j = i1 and j = i2, respectively. We want zi3 to be the most
dissimilar to both zi1 and zi2 . We can do this by minimizing the maximum of the two p-values. Then, we have zi3 . Using
this idea, we can obtain all seeds zi1 , . . . , zik for C1, . . . , Ck, respectively.

To finalize our initial C, the next task is to assign the remaining objects to one of C1, . . . , Ck. We assign zi to cluster s
if it is the most similar to Cs. We need this for all i ̸= zi1 , . . . , zik , which can also be achieved by the UMPU test statistic
given by (9) with j ∈ {i1, . . . , ik}, respectively. We claim that zi is the most similar to Cs if the p-value of the UMPU test
is maximized at j = s. Then, we have our initial C.

We next carry out an iterative method to update C. We want to reassign every zi to the cluster candidates with an
improved result. This can also be achieved by the UMPU test. In particular, let C̃ be the result given by the previous
4
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iteration. Then, for each zi ∈ S , there exists a unique Cs ∈ C̃ such that zi ∈ Cs. In the current iteration, we need to
etermine whether zi should be kept in Cs or moved to another Cs′ with s′ ̸= s. After we do this for all zi, we obtain an

updated result. It is denoted as C in the current iteration. The notation will be changed to be C̃ in the next iteration.
To derive the updated C based on the previous C̃, for each zi ∈ S , we need to know whether zi should be kept in the

current Cs or moved to another Cs′ . To fulfill the task, we calculate the UMPU test statistic for

H0 : βi2 = βs′′2 ↔ H1 : βi2 ̸= βs′′2, (10)

for every Cs′′ ∈ C̃. Because there are k cluster candidates in C̃, we obtain k p-values of zi. We want to reassign zi to the
ost similar Cs′ by using these p-values. For every zi ∈ S , we reassign zi to cluster candidate Cs′ if the p-value of the UMPU

test statistic given by (10) is maximized at s′′ = s′. This can involve two cluster candidates. After we use the method for
all zi ∈ S , we obtain the updated C, which becomes C̃ in the next iteration. Although it is very unlikely, to ensure each
Cs non-empty theoretically, we do not move the object with the largest p-value in current Cs to any other Cs′ . Then, we
have the following algorithm.

Algorithm 1 Generalized k-means in GLMs
Input: S = {z1, . . . , zN } with zi = {y i,Xi}

Output: C = {C1, . . . , Ck} and the value of UMPU test statistic based on C
1: Initialization: find distinct zi1 , . . . , zik such that they are the most dissimilar, and use those to generate the initial C.
2: procedure Update Iteratively
3: For each Cs , compute the p-value of zi under (10) for every zi ∈ Cs . The object with the largest p-value will be remained in Cs .
4: For every other zi ∈ Cs that will not be remained, compute its p-values under (10) for every Cs′′ ∈ C. Assign zi to Cs′ if the largest p value is

attained at s′′ = s′ .
5: end procedure
6: Output.

Algorithm 1 has two major stages. The second stage is given by Step 2 to Step 5, which is common in many k-means
algorithms. The goal of the first stage given by Step 1 is to find the best initial C. We want it to be as heterogeneous
as possible. In the end, the algorithm provides k non-empty clusters with the value and the p-value of the UMPU test
statistic based on the final partition.

The usage of Step 1 in Algorithm 1 can increase the accuracy and the speed compared to the method with the random
assignment of the initial C. This has been found in the k-means++ when data are collected from a Euclidean space (Arthur
and Vassilvitskii, 2007). Because our Step 1 can be treated as an extension of the initialization in k-means++, we treat
k-means++ as our method if we want to compare it with our competitors for data from Euclidean spaces. This is used in
Section 4.2.

2.2. Generalized information criterion

The generalized k-means proposed in Section 2.1 cannot be used if k is unknown. To overcome the difficulty, we use
the likelihood function given by Algorithm 1 to construct a penalized likelihood function, which is used in determining
k if it is unknown. The penalized likelihood approach has been widely applied in variable selection problems. It is also
used in clustering analysis problems (Chen et al., 2016; Chi and Lange, 2015; Hocking et al., 2011). Here, we adopt the
well known GIC approach (Zhang et al., 2010) to construct our objective function with the best k obtained by optimizing
the corresponding criterion.

Let ℓ(ωC) be the loglikelihood of (7), where ωC represents all of the parameters involved in the model. If the dispersion
parameter is not present, then ω is composed by βi1 and βs2 for all i ∈ {1, . . . ,N} and s ∈ {1, . . . , k} only. It is enough for
us to use ℓ(ωC) to define the objective function in GIC. If the dispersion parameter is present, then we need to address the
impact of the estimator of a(φ), because variance can be seriously underestimated in the penalized likelihood approach
under the high-dimensional setting (Fan et al., 2012). We introduce our approach based on (3) without a(φ) first. We then
modify it to the case when a(φ) is present.

Assume that a(φ) does not appear in (3). The GIC for (7) is defined as GICκ (C) = −2ℓ(ω̂C)+ κdfC , where ω̂C is the MLE
of ω and dfC is the model degrees of freedom under C, and κ is a positive number that controls the properties of GIC. If q1
is the dimension of βi1 and q2 is the dimension of βi2, then dfC = Nq1 + kq2. Because N does not vary with k, we define
the objective function in our GIC as

GICκ (C) = −2ℓ(ω̂C) + κkq2. (11)

The best k is solved by

k̂κ = argmin
k

{GICκ (Ĉk)}, (12)

where Ĉk is the best grouping based on the current k. The GIC given by (11) includes AIC if we choose κ = 2 or BIC if we
choose κ = log n. If these are adopted, then the solutions given by (12) are denoted by k̂AIC and k̂BIC , respectively.

We need to estimate the dispersion parameter if it is present. Because the estimator based on the current k can be

seriously biased, we recommending using k + 1 as the number of clusters in the computation of the estimate of a(φ). In

5
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particular, we calculate the best C based on the current k in the generalized k means. We use it to compute β̂i1 and β̂s2
or all i ∈ {1, . . . ,N} and s ∈ {1, . . . , k}. Next, we calculate the best C by setting the number of clusters equal to k + 1
ith a(φ) estimated by (5). This is analogous to the full model versus the reduced model approach in linear regression,
here the variance parameter is always estimated under the full model. We treat the model with k+ 1 clusters in (7) as
he full model, and the model with k clusters as the reduced model. We estimate a(φ) based on the full model but not
he reduced model. After a(φ̂) is derived, we put it into (11) in the computation of GIC. We then use (12) to calculate the
est k when a(φ) is present. This is used in our method for regression models.

.3. Specification

In regression, (6) becomes

y i = Xi1βi1 + Xi2βi2 + ϵi, (13)

here Xi1 = (x⊤

i11, . . . , x
⊤

ini1
)⊤, Xi2 = (x⊤

i12, . . . , x
⊤

ini2
)⊤, and ϵi ∼ N (0, σ 2Ini ). With a given C, our generalized k-means

odel becomes

y i = Xi1βi1 + Xi2βs2 + ϵi, (14)

or zi ∈ Cs. We treat (14) as a special case of (13). Because the second stage in Algorithm 1 is common, we only discuss
he first stage.

We select seed zi1 for C1 randomly. Suppose that zi1 , . . . , zik̃ have been selected as the seeds for C1, . . . , Ck̃, for any k̃ < k,
espectively. To determine zik̃+1

for Ck̃+1, we calculate the dissimilarity measure between zs and zi for s ∈ S̃k̃ = {zi1 , . . . , zik̃}
nd i ̸∈ S̃k̃ based on yv = Xv1(βs1 + δvξs1)+Xv2(βs2 + δvξs2)+ ϵv , where v = s or v = i, δv is the dummy variable defined

as δv = 0 if v = s or δv = 1 if v = i, and ϵv ∼ N (0, σ 2Ini ) is the error vector. As the UMPU test statistic becomes an
F-statistic, we calculate the F-statistic for

H0 : ξi2 = 0 ↔ H1 : ξi2 ̸= 0. (15)

Let psi be the p-value of the F-statistic. We define the p-value of the dissimilarity between zi and S̃k̃ as pi = maxs∈S̃k̃ psi.

We choose zi as the seed for Ck̃+1 if it has the lowest pi value among all objects in S̃k̃. Therefore, zik̃+1
is given by the

minimax principal as

ik̃+1 = argmin
i

pi = argmin
i

max
s

psi. (16)

After we obtain S̃k, which is the set of all of the seeds for C, we calculate the p-value of the F-statistic for (15) for every
∈ S̃k and i ̸∈ S̃k. We assign zi to Cs if psi is maximized at s. Then, we have the initial C. By iterating the second stage in
lgorithm 1, we obtain the final Ĉk based on a given k.
Because σ 2

= a(φ) is present, we follow the GIC in variable selection for regression models (Zhang et al., 2010), and
ropose our GIC based on a known σ 2 as

GICσ2,κ (C) =
SSE
σ 2 + κkq2, (17)

here SSE is the sum of squares of errors given by (14).
Because σ 2 cannot be known, we need to estimate σ 2 in our method. We use the full versus reduced model approach.

If the current k is used, then the estimate of σ 2 is SSE divided by residual degrees of freedom. The first term on the
right-hand side of (17) is always equal to n − Nq1 − kq2, implying that this cannot be used. To overcome the difficulty,
we use k + 1 in (14) to estimate σ 2, denoted as σ̂ 2

k+1. Therefore, our GIC based on an unknown σ 2 becomes

GICκ (C) =
SSEk

σ̂ 2
k+1

+ κkq2, (18)

here SSEk is the SSE with k clusters in (14). This is appropriate. If the number of true clusters is less than or equal to k,
hen slightly increasing the number of clusters would not significantly change the estimate of σ 2, implying that the second
erm dominates the right-hand side of (18). Otherwise, the estimate of σ 2 would be significantly reduced, implying that
he first term dominates the right-hand side of (18). Therefore, the objective function in our GIC provides a nice trade-off
etween the SSE and the penalty function.
In loglinear models for Poisson data, (6) becomes

log(µij) = x⊤

ij1βi1 + x⊤

ij2βi2. (19)

ith a given C, it reduces to

log(µ ) = x⊤ β + x⊤ β , (20)
ij ij1 i1 ij2 s2

6
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for i ∈ Cs. Analogous to the regression models, after selecting zi1 randomly, we investigate

log(µvj) = x⊤

vj1(βs1 + δvξi1) + x⊤

vj2(βs2 + δvξi2), (21)

ith v = s or v = i. We measure the dissimilarity between zs and zi by the likelihood ratio statistic. We derive the initial C
by the same idea that we have displayed in regression models. With the second stage in Algorithm 1, we obtain Ĉk based
on a given k. To determine the best k, we choose −2ℓ(ω̂Ck ) as the residual deviance of (20). As the dispersion parameter
is not present, the implementation of GIC is straightforward.

For quasi-Poisson data, there is V(yijj) = φE(yij) = φµij, implying that a(φ) = φ. We can still use (19), (20), and (21) to
find the best C with a given k. To determine the best k when it is unknown, we estimate φ by (5), which is the Pearson
goodness-of-fit statistic under (20) divided by its residual degrees of freedom. For the same reason, we choose the number
of clusters equal to k + 1 in (20) in estimating φ. It is denoted as φ̂k+1. This induces

GICκ (C) =
G2
k

φ̂k+1
+ κkq2, (22)

here G2
k is the residual deviance (i.e., deviance goodness-of-fit) with k clusters in (20).

. Asymptotic properties

We evaluate asymptotic properties of our method under n =
∑N

i=1 ni → ∞, achieved by letting nmin = mini(ni) → ∞.
o simplify our notations, we assume that ni are all equal to n0 and |Cs| are all equal to c such that we have N = kc and
= kcn0 in our data. The case with distinct ni and |Cs| can be proven under their minimums going to infinity with

ounded ratios between the minimums and the maximums, where the idea is the same.
The asymptotic properties are evaluated under n0 → ∞ possibly with k, c → ∞, which includes the case when both

and c are constants. For any i ̸= i′, let Λii′ be the likelihood ratio statistic for

H0 : βi2 = βi′2 ↔ H1 : βi2 ̸= βi′2. (23)

s n0 → ∞, −2 logΛ is asymptotically χ2
q2 distributed if zi and zi′ are in the same cluster, or goes to ∞ with rate

0 otherwise. Because (23) is applied to all pairs (i, i′) in S , the multiple testing problem must be addressed. This can
e solved by the method of higher criticisms (Donoho and Jin, 2004). Because we restrict our methods on exponential
amily distributions, all usual regularity conditions (e.g., all those listed in Chapters 17, 18, and 22 in Ferguson (1996))
or consistency and asymptotic normality of the MLE and the asymptotic χ2-distribution of the likelihood ratio statistic
old. Therefore, we do not need to impose any other conditions.

emma 1. Assume that (yij, x⊤

ij )
⊤ for j ∈ {1, . . . , n0} are iid copies of (7) with PDF or PMF given by (3) based on a non-

egenerate common distribution of xij for any given i ∈ S . If zi and zi′ are in the same cluster, then −2 logΛii′
L

→ χ2
q2 . If zi and

i′ are in different clusters, then exists a positive constant A = A(βi, βi′ , φ), such that the limiting distribution of −2 logΛ−n0A
s non-degenerate as n0 → ∞.

roof. The conclusion can be proven by the standard approach to the asymptotic properties of maximum likelihood and
-estimation. Please refer to Chapter 22 in Ferguson (1996) and Chapter 5 in van der Vaart (1998). □

heorem 1. If the assumption of Lemma 1 holds, and N = o(en
α
0 ) for some α ∈ (0, 1) when n0 → ∞, then Ĉk

P
→ C.

roof. Note that the likelihood ratio test based on Λii′ is applied to distinct i, i′ ∈ C. We need to evaluate the impact of the
ultiple testing problem. We examine the distribution of the −2 logmaxi̸=i′ Λii′ based on Lemma 1. According to Donoho
nd Jin (2004), it is asymptotically bounded by a constant times 2 logN if zi and zi′ are in same clusters or increases to
with rate n0 if zi and zi′ are in different clusters. Thus, with probability 1, the increasing rate of −2 logΛii′ with zi and

i′ in different clusters is faster than that of Λii′ with zi and zi′ in same clusters, implying the conclusion. □

heorem 2. Assume that a(φ) is not present in (3) or a(φ) is consistently estimated by a(φ̂) used in the construction of GIC,
nd the assumption of Theorem 1 holds. If κ−1 log c → 0 as n0 → ∞, then k̂κ

P
→ k and Ĉk̂κ

P
→ C.

roof. If k̂κ < k, then we can find at least one pair of zi and zi′ , such that they are not in the same cluster but they
re grouped to the same cluster. By Lemma 1, the first term on the right-hand side of (11) goes to ∞ with rate n0. It is
aster than the rate of GIC under k̂κ = k, implying that P(k̂κ < k) = 0 as n0 → ∞. Therefore, we only need to study the
ase when k̂κ ≥ k. The loglikelihood function of (7) based on a given C is equal to the sum of the loglikelihood functions
btained from each Cs ∈ C. By Theorem 1, we can restrict our attention on the case when all objects in Cs are in the same
luster. By Donoho and Jin (2004), with probability 1, the loglikelihood function (7) in Cs is not higher than that under the

2
rue cluster plus 2 log c. By the property of the χ -approximation of the likelihood ratio statistic under the true C, with

7
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probability 1, the first term on the right-hand side of (11) is not higher than n0N − (Nq1 + kq2) + 2kq2 log c . Combining
t with the second term, we conclude that k̂κ

P
→ k. Finally, we draw the conclusion by Theorem 1. □

Theorem 1 implies that both c and k can increase exponentially fast in n0 when k is known, but the rate is significantly
educed when k is unknown. If c → ∞, then we cannot choose κ = 2 in our method, implying that k̂AIC is not consistent,
ut we can still show that k̂BIC is consistent.

orollary 1. Suppose that all of assumptions of Theorem 2 are satisfied. If k → ∞ or k is constant, and c/n0 → 0 when

0 → ∞, then k̂BIC
P

→ k.

roof. Note that the increasing rate of log n cannot be lower than the increasing rate of log c. We draw the conclusion by
heorem 2. □

Corollary 1 implies that BIC can be used to determine the number of clusters if k is unknown. This is consistent with
any findings for BIC in tuning parameter determinations. Examples include variable selection (Zhang et al., 2010) and
imension reduction (Bai et al., 2018) problems. In clustering analysis, if data are collected from a Euclidean space, then
t is generally hard to provide a consistent estimator of σ 2 (or a(φ)) based on an unknown k, implying that it is unlikely
o implement GIC to determine the number of clusters. This issue can be easily solved in our method because σ 2 can
e consistently estimated by statistical models. Therefore, we can use GIC to determine the number of clusters, but this
pproach cannot be migrated to data from Euclidean spaces.

. Simulation

We carried out simulations to evaluate our methods. For an estimated cluster assignment Ĉ and the true clustering
ssignment C, we define the clustering error (CE) of Ĉ as CEĈ =

(N
2

)−1
#{(i, i′) : δ̂ii′ = δii′ , 1 ≤ i < i′ ≤ N}, where δ̂ii′ = 1

f zi and zi′ belong to the same clusters in Ĉ, or δ̂ii′ = 0 otherwise, and similarly for δii′ in C. For estimated clustering
ssignments Ĉ1, . . . , ĈR obtained from R simulation replications, we calculate the percentage of clustering object errors
OE) by

OE =
100
R

R∑
j=1

CEĈj . (24)

This is a commonly used criterion in the clustering literature (Wang, 2010). We also study the percentage of numbers of
clusters identified correctly (IC) as

IC =
100
R

R∑
j=1

I(k̂j = k), (25)

here k̂1, . . . , k̂R are the estimated numbers of clusters obtained from R simulation replications, and k is the true number
f clusters. We compare methods based on CE and IC .

.1. Regression models with a few explanatory variables

We generated data from regression models with k = 2, 3 clusters and 2 explanatory variables. This was treated
as the implementation of our method under the low-dimensional setting. Each cluster had c = 10, 20 objects. Each
object contained n0 = 50, 100 observations. We generated explanatory variables xij1 from U[18, 70] and xij2 from N (0, 9)
ndependently. For each selected k, c , and n0, we generated the normal response from

yij = βi0 + xij1βs1 + xij2βs2 + ϵij, (26)

or j = 1, . . . , n0 and i = 1, . . . ,N , where N = cn0 and ϵij ∼
iid N (0, σ 2) with σ = 0.5, 1.0. We set βi0 = βi′0 if zi and

zi′ were in the same cluster in (26). If k = 2, we chose βi0 = 1, βi1 = −0.06, and βi2 = −0.01 when zi was in the first
cluster, or βi0 = 1, βi1 = 0.06, and βi2 = 0.01 when zi was in the second cluster. If k = 3, we added one more cluster by
choosing βi0 = 1, βi1 = −0.02, and βi2 = 0.01 when zi was in the third cluster. Then, we obtained data from (26) with
either 2 or 3 clusters.

We evaluated our method based on AIC and BIC with the comparison to the previous EM algorithm proposed by Qin
and Self (2006). We implemented our AIC and BIC given by (18) by choosing κ = 2 and log(n), respectively. The EM
algorithm was implemented by R package RegClust. To implement RegClust, we had to consider the saturated clustering
problem, where we chose βi0 not varied within clusters. We also considered two other competitors. The first was the
usual k-means directly on regression coefficients. The second was the convex clustering (Chi and Lange, 2015) directly
on regression coefficients. Following Tibshirani et al. (2001), we estimated the number of clusters by maximizing the gap
statistic.
8
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Table 1
Percentage of numbers of clusters identified correctly (IC) based on 1000 simulation replications when data are
generated from (26) with respect to k-means (K), convex clustering (Convex), the EM algorithm, and our AIC and
BIC selectors in generalized k-means.
σ c k n0 = 50 n0 = 100

K Convex EM AIC BIC K Convex EM AIC BIC

0.5 10 2 53.2 59.7 81.1 15.4 97.6 70.2 73.9 72.4 21.4 98.1
3 23.3 19.2 0.0 5.6 97.8 10.7 7.4 0.0 6.2 98.9

20 2 85.1 87.2 75.1 0.5 88.6 92.3 91.7 75.2 0.3 93.2
3 6.7 5.6 0.0 0.0 95.9 1.7 1.5 0.0 0.0 97.3

1.0 10 2 22.6 25.0 75.1 17.3 96.8 35.9 39.2 71.6 15.9 98.6
3 27.3 21.6 0.0 7.3 95.7 24.4 21.5 0.0 4.9 98.4

20 2 52.4 52.7 74.2 0.5 93.0 69.5 71.5 72.2 0.3 93.8
3 15.6 13.0 0.0 0.3 87.6 15.1 14.0 0.0 0.0 96.5

Table 2
Percentage of clustering object errors (OE) based on 1000 simulation replications when data are generated from (26)
with respect to k-means (K), convex clustering (Convex), the EM algorithm, and our AIC and BIC selectors in generalized
k-means.
σ c k n0 = 50 n0 = 100

K Convex EM BIC K Convex EM BIC

0.5 10 2 48.7 46.9 10.0 0.3 47.4 46.9 33.6 0.0
3 47.7 47.1 14.5 0.2 49.5 49.2 33.1 0.3

20 2 49.7 49.5 12.8 1.3 49.5 49.4 33.1 0.3
3 49.8 49.7 12.8 0.8 50.1 50.0 31.8 0.2

1.0 10 2 48.8 48.5 13.1 0.4 49.0 48.6 33.6 3.1
3 45.6 44.5 14.9 0.2 46.7 45.8 36.4 0.2

20 2 49.8 49.6 13.3 0.8 49.7 49.6 34.5 3.8
3 48.4 47.8 14.3 0.7 49.0 48.7 36.5 0.4

Table 1 displays the simulation results for the percentage of number errors correctly identified by the EM algorithm,
the k-means and convex clustering directly on regression coefficients, and our AIC and BIC selectors. Although it was also
based on BIC for numbers of clusters, in all of the simulations that we ran, we found that the number of clusters reported
by the EM algorithm based on RegClust was either 1 or 2, implying that it could not identify the true number of clusters
when k > 2. The performance of k-means and convex clustering was slightly better than that of the EM algorithm, but it
was not as good as our BIC selector. The true k could be detected by our BIC not our AIC.

Table 2 displays the simulation results for the percentage of clustering object errors by the EM algorithm, the k-means
and convex clustering directly on regression coefficients, and our BIC selector. We did not include AIC in the table because
BIC was better. Our result shows that our BIC was always better than our competitors. It was able to find the true number
of clusters with lower clustering object errors. This is an advantage of our generalized k-means for regression models under
the low-dimensional setting.

4.2. Regression models with many explanatory variables

We still generated data from regression models with k = 2, 3 clusters, but we increased the number of explanatory
variables to 15 such that it could reflect our method under the high-dimensional setting. We studied the unsaturated
problem. We also chose c = 10, 20 objects in each cluster, and each object contained n0 = 50, 100 observations. We
enerated the 15th explanatory variables independently from N (0, 1). For each selected k, c , and n0, we generated the
ormal response from

yij = βi0 +

5∑
t=0

xijtβit +

15∑
t=6

xijtβit + ϵij, (27)

or j = 1, . . . , n0 and i = 1, . . . ,N , where N = cn0 and ϵij ∼ N (0, σ 2) with σ = 0.1, 0.2, 0.5, 1.0. We generated
βi0, . . . , βi5 independently N (0, 0.22) for each i. If k = 2, we chose βit = 0.05 for 6 ≤ t ≤ 15 when zi was in the
first cluster, or βit = −0.05 when zi was in the second cluster. If k = 3, we added one more cluster by choosing
βit = · · · = βit = −0.05 for 6 ≤ t ≤ 10 or βit = 0.05 for 11 ≤ t ≤ 15. We obtained data from (27) with k = 2, 3
clusters.

We discarded our AIC and only used our BIC selector for number of clusters (Table 3). We wanted to group the statistical
models based on the last 10 regression coefficients (i.e., it is an unsaturated clustering problem). We could not use RegClus
because it has not been formulated for an unsaturated clustering problem yet. Therefore, we compared our method with
the other two competitors: the k-means and the convex clustering directly on regression coefficients. We also included
9
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Table 3
Percentage of numbers of clusters identified correctly (IC) based on 1000 simulation replications when data are
generated (27) with respect to k-means (K), convex clustering (Convex), and k-means++ (KPP) directly on regression
coefficients based on the gap statistic and our BIC selector in generalized k-means.
σ c k n0 = 50 n0 = 100

K Convex KPP BIC K Convex KPP BIC

0.1 10 2 92.6 98.5 88.2 100.0 96.5 100.0 93.9 100.0
3 72.3 99.2 90.2 100.0 72.4 99.9 93.1 100.0

20 2 99.7 100.0 98.9 100.0 100.0 100.0 99.9 100.0
3 73.3 100.0 99.2 100.0 72.9 100.0 99.9 100.0

0.2 10 2 94.6 97.8 90.9 100.0 96.0 99.8 93.3 100.0
3 36.8 47.5 26.9 100.0 75.6 99.2 95.0 100.0

20 2 99.7 100.0 99.0 100.0 100.0 100.0 99.9 100.0
3 24.6 24.4 10.6 100.0 77.2 100.0 99.8 100.0

0.5 10 2 95.7 99.9 93.5 100.0 96.0 99.1 95.4 100.0
3 1.1 1.3 1.2 88.7 1.3 1.4 1.4 100.0

20 2 99.9 100.0 99.7 100.0 99.9 100.0 99.8 100.0
3 0.0 0.0 0.0 95.2 0.0 0.0 0.0 100.0

1.0 10 2 96.2 100.0 93.0 100.0 97.7 100.0 95.8 100.0
3 0.9 0.8 1.6 16.2 0.3 0.2 0.3 57.5

20 2 99.6 100.0 99.6 100.0 100.0 100.0 99.9 100.0
3 0.0 0.0 0.0 39.8 0.0 0.0 0.0 84.3

Table 4
Percentage of clustering object errors (OE) based on 1000 simulation replications when data are generated from (27)
with respect to k-means (K), convex clustering (Convex), and k-means++ (KPP), directly on regression coefficients and
our BIC selector in the generalized k-means.
σ c k n0 = 50 n0 = 100

K Convex KPP BIC K Convex KPP BIC

0.1 10 2 0.4 0.1 0.6 0.0 0.2 0.0 0.3 0.0
3 1.4 0.0 0.2 0.0 1.5 0.0 0.1 0.0

20 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.5 0.0 0.0 0.0 1.5 0.0 0.0 0.0

0.2 10 2 0.3 0.1 0.5 0.0 0.2 0.0 0.3 0.0
3 14.0 12.4 16.1 0.0 1.4 0.0 0.1 0.0

20 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 17.5 17.6 20.6 0.0 1.5 0.0 0.0 0.0

0.5 10 2 10.8 10.3 10.4 0.1 0.9 0.6 0.9 0.0
3 33.1 32.6 32.2 2.5 26.0 26.8 25.7 0.1

20 2 8.4 8.2 8.3 0.1 0.5 0.5 0.5 0.0
3 31.4 31.3 31.2 1.5 25.9 26.3 25.6 0.1

1.0 10 2 41.1 40.2 40.0 8.3 22.8 21.7 20.5 1.2
3 46.8 45.7 46.4 22.6 38.9 38.1 38.0 11.1

20 2 39.4 38.9 38.1 5.3 18.6 18.0 17.7 1.2
3 45.9 45.2 45.1 18.0 36.4 36.1 35.8 4.5

the k-means++ in our comparison because Step 1 in Algorithm 1 was motivated by initialization of k-means++. Similar
to Section 4.1, we still estimated the number of clusters by maximizing the gap statistic. It was used to the k-means, the
convex clustering, and the k-means++. Our results showed that all of the four methods were able to identify the number
of clusters when σ was small (i.e., σ = 0.1, 0.2), but our BIC selector could still be used to identify the number of clusters
even when σ was large (i.e., σ = 0.5, 1.0). This was because our method was formulated by the UMPU test, which was
optimal in measuring the difference between statistical models. The performance of the convex clustering was better than
that of the k-means and the k-means++, indicting that it is more appropriate than the other two methods in grouping
regression models.

We also evaluated the percentage of clustering object errors (Table 4). We found that our method was also better than
our competitors, as it had the lowest clustering object errors. The performance of the convex clustering was better than
that of the k-means and the k-means++. Notice that many penalties could be used to determine the number of clusters
and the gap statistic was just one of those. Examples can be found in Koepke and Clarke (2013). To know whether the
performance of our competitors could be significantly improved if other penalties were adopted, we compared our BIC
selector based on an unknown k with our competitors based on a known k. In this case, the impact of the penalties was
completely removed in our competitors. Our results (not shown) indicated that the percentage of clustering object errors
was almost the same as those displayed in Table 4. This means that our method based on an unknown k was better
than our competitors based on a known k. Thus, our method can significantly enhance the precision and accuracy in
grouping statistical models compared to our competitors. It is more appropriate to use our method than our competitors
in grouping statistical models (see Table 5).
10
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Table 5
Percentage of number of clusters identified correctly (IC) based on 1000 simulation replications when
data are generated from a Euclidean space (i.e., R5) with respect to the k-means (K), the convex clustering
(Convex), and the k-means++ (KPP) based on the gap statistic.
σ k n0 = 100 n0 = 200

K Convex KPP K Convex KPP

0.001 2 100.0 100.0 100.0 100.0 100.0 100.0
3 62.1 89.4 100.0 60.2 91.7 100.0
4 44.9 80.4 98.8 44.5 85.7 98.9

0.002 2 100.0 100.0 100.0 100.0 100.0 100.0
3 62.0 88.9 100.0 59.6 93.4 99.9
4 46.2 85.0 98.7 48.9 86.7 98.5

0.005 2 100.0 100.0 100.0 100.0 100.0 100.0
3 65.3 89.7 100.0 64.5 93.5 100.0
4 45.3 83.9 98.6 47.8 85.7 98.4

0.01 2 100.0 100.0 100.0 100.0 100.0 100.0
3 67.0 89.6 100.0 67.1 90.7 100.0
4 46.9 83.3 98.9 48.4 84.1 98.5

Table 6
Percentage of clustering object errors (OE) based on 1000 simulation replications when
data are generated from a Euclidean space (i.e, R5) with respect to the k-means (K), the
convex clustering (Convex), and the k-means++ (KPP) based on the gap statistic.
σ k n0 = 100 n0 = 200

K Convex KPP K Convex KPP

0.001 2 0.0 0.0 0.0 0.0 0.0 0.0
3 2.4 0.0 0.0 2.5 0.0 0.0
4 4.6 0.3 0.2 4.2 0.4 0.1

0.002 2 0.0 0.0 0.0 0.0 0.0 0.0
3 2.4 0.0 0.0 2.6 0.0 0.0
4 4.3 0.4 0.2 4.3 0.4 0.2

0.005 2 0.0 0.0 0.0 0.0 0.0 0.0
3 2.1 0.0 0.0 2.2 0.1 0.0
4 4.1 0.3 0.2 4.5 0.4 0.2

0.01 2 0.0 0.0 0.0 0.0 0.0 0.0
3 2.0 0.1 0.0 2.0 0.5 0.0
4 4.1 0.4 0.1 4.3 0.4 0.2

To understand the importance of the UMPU test statistic, we compared the k-means, the convex clustering, and the
-means++ when they were applied to data from Euclidean spaces. In this case, we generated data from R5 with k = 2, 3, 4

clusters. At the beginning, for each k, we generated cluster centers by the uniform distribution on [0, 1]5. Then, for each
cluster center, we generated n0 points by the multivariate normal distribution with mean vector to be the cluster center
and variance–covariance matrix to be σ 2I. After that, we used the three methods to group the data with the number of
clusters to be determined by the gap statistic. We found that based on the gap statistic, all of the three methods can
correctly identify the true number of clusters. The performance of the k-means++ was better than the other two, because
of its initialization. Because Step 1 in our algorithm is motivated by the k-means++, we conclude that this step could also
increase the precision and accuracy compared to the method based on random initialization. Our result for the percentage
of clustering object errors (Table 6) indicated that the three methods were all precise even if they did not find the correct
number of clusters. To confirm this, we looked at the information contained by additional clusters. We found that they
were all small and did not significantly affect the results of the percentage of clustering object errors.

In summary, our simulation shows that all of the k-means, the convex clustering, and the k-means++ are precise and
accurate in grouping data from Euclidean spaces, but our method is more precise and accurate than those in grouping
statistical models. This is because our method is formulated by the UMPU test, which is the best in measuring the
difference between statistical models. Initialization of clustering methods is important. A good initialization can increase
precision and accuracy of the results.

4.3. Loglinear models

Similar to the regression models, we also chose k = 2, 3 clusters in loglinear models for Poisson data. Each cluster
had c = 10, 20 objects. Each object contained n0 = 50, 100 observations. We generated explanatory variables xij1 and xij2
from N (0, 4) independently. For each selected k, c , and n0, we independently generated the response yij from P(λij) with

log λ = β + x β + x β , (28)
ij i0 ij1 s1 ij2 s2

11
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Table 7
Percentage of number clusters identified correctly (IC) in loglinear models based on 1000 simulation
replications when data are generated from (28).
τ c n0 = 50 n0 = 100

k = 2 k = 3 k = 2 k = 3

AIC BIC AIC BIC AIC BIC AIC BIC

0.5 10 1.6 91.7 0.3 90.9 1.6 94.9 0.4 93.9
20 0.1 71.2 0.0 68.7 0.0 80.1 0.0 77.1

1.0 10 2.1 92.5 1.2 92.1 1.3 95.3 0.6 95.2
20 0.0 78.1 0.0 76.5 0.1 83.4 0.0 83.0

Table 8
BIC for percentage of clustering object errors (OE) in loglinear models based
on 1000 simulation replications with data generated from (28).
τ c k for n0 = 50 k for n0 = 100

2 3 2 3

0.5 10 1.3 0.6 0.8 0.4
20 4.4 2.1 3.0 1.5

1.0 10 1.1 0.5 0.7 0.3
20 3.3 1.5 2.5 1.1

for j = 1, . . . , n0 and i = 1, . . . ,N , where N = cn0. We generated βi0 independently from N (10, 1). We set (β11, β12) =

(1, 1) in the first cluster and (β21, β22) = (−1, −1) in the second cluster. This was used if k = 2. If k = 3, we chose
(β31, β32) = (1, −1) in the third cluster. We evaluated our method based on AIC and BIC for the unsaturated clustering
problem, where we varied βi0 within clusters.

Table 7 displays the simulation results for the percentage of clustering number errors. We also found that the true k
could be identified by our BIC but not by our AIC. Table 8 displays the results for the percentage of clustering object errors
based on BIC. It shows that the percentage of clustering object errors was still low, indicating that BIC can be used to find
the correct number of cluster with the low error rate. Therefore, we recommend using BIC in our generalized k-means if
the number of clusters is unknown.

5. Application

We implemented our method to the state-level daily COVID-19 data in the United States. The state-level daily COVID-19
data are reported by the United States Centers for Disease Control and Prevention (CDC). The data set contains confirmed
disease counts, deaths, and recoveries with the information updated everyday. Data reported by CDC are based on the
most recent numbers reported by states and territories in the United States. COVID-19 can cause mild symptoms, which
can induce delays in reporting and testing, leading to difficulties in reporting the exactly numbers of COVID-19 cases.
The accuracy of the data has been discussed by CDC. CDC attempts to provide more accurate data by updating previous
information. The detail interpretation of the accuracy of the data can be found in the website of the CDC.

In the global pandemic of COVID-19, many countries in the Northern Hemisphere have encountered dramatically
increased cases and deaths since August 2020, leading to the appearance of the second wave (which they called). Patients
in the second wave were younger than those in the first wave, but the impact was still unclear (Iftimie et al., 2020). We
applied our method to the data until July 31 2020 to avoid this problem.

The outbreak of COVID-19 has occurred and become the ongoing pandemic in the world since March 2020. More than
200 countries and territories have affected. The most serious country is the United States. Until July 31, it had over 4.7
million confirmed cases and one hundred sixty thousand deaths. Both were the highest in the world. After briefly looking
at the patterns of the data (Fig. 2), we found that some of the curves were similar to each other (e.g., California and
North Carolina) but some of those were far away from each other (e.g., California and Michigan). To address this issue, a
straightforward approach is to group these curves by a clustering method. This can help us understand the connection of
outbreaks between individual states. We found significant changes in the daily patterns before May 31 and after June 1.
Two possible issues were identified based on social medias. The first was the George Floyd issue, that occurred on May
25 in Minneapolis. The second was the economy reopening issue. Most states reopened their economy or released their
restrictions for the prevention of the spread at the end of May.

The first patient of COVID-19 appeared in Wuhan, China, on December 1 2019. In late December, a cluster of pneumonia
cases of unknown causes was reported by local health authorities in Wuhan with clinical presentations greatly resembling
viral pneumonia (Chen et al., 2020; Sun et al., 2020). Deep sequencing analysis from lower respiratory tract samples
indicated a novel coronavirus (Feng, 2020; Huang et al., 2020). The virus of COVID-19 primarily spreads between people
via respiratory droplets from breathing, coughing, and sneezing (World Health Organization (WHO), 2020). This can cause
cluster infections in society. To avoid cluster infections, many countries have imposed travel restrictions, which affected
12
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Fig. 2. Daily new cases of COVID-19 in 48 states in the mainland United States.

over 91% of the total population of the world with three billion people living in countries with restrictions on people
arriving from other countries borders completely closed to noncitizens and nonresidents (Pew Research Center, 2020).

Exponential increasing trends are expected at the beginning of outbreaks in any infectious disease. This has been
observed in the 2009 Influenza A (H1N1) pandemic (de Picoli et al., 2011) and the 2014 Ebola outbreak in West
Africa (Hunt, 2014). Without any prevention efforts, the exponential trend will be continuing for a long time until a
large portion of people is infected. This trend can be changed by government prevention (Maier and Brockmann, 2020).
This is the reason why we study the data until July 31, 2020.

To obtain a more appropriate model, we investigate a few candidate models. We choose the response as the number
of daily new cases and explanatory variables as certain functions of time. We obtain two candidate models. The first is
the exponential model given by

log λj = µ + β(tj − t0), (29)

here t0 is the starting date, tj is the current date, λj = E(yj), and yj is the number of daily new cases observed on the
urrent date. The second is the Gamma model given by

log λj = µ + α log(tj − t0) + β(tj − t0). (30)

he Gamma model assumes that the expected number of daily new cases is proportional to the density of a Gamma
istribution. If the second term is absent, then the Gamma model reduces to the exponential model, implying that (29)
s a special case of (30).

In the case when α > 0, if β > 0, then the third term dominates the right-hand side of (30). The expected value of the
esponse goes to infinity as time goes to infinity, leading to an exponential increasing trend in the outbreak in the study
eriod. If β < 0, then the peak of the model is attained at tmax = t0 − α/β . An increasing trend is expected if t < tmax,
nd a decreasing trend is expected otherwise. Therefore, we can use the sign of β to determine whether the outbreak is
nder control or not.
13
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Table 9
Fitting results of the exponential and the Gamma models for the outbreak of COVID-19 in eleven selected
countries between January 11 to May 31, 2020.
Country Exponential Gamma

µ β R2 µ α β R2 Peak

China 7.91 −0.032 0.368 −9.6 7.77 −0.290 0.813 02/07
USA 7.23 0.025 0.582 −64.7 20.56 −0.195 0.939 04/26
Canada 4.19 0.026 0.561 −75.1 22.61 −0.215 0.920 04/26
Russia 3.67 0.044 0.840 −135.2 37.90 −0.308 0.993 05/13
Spain 6.59 0.013 0.164 −77.0 24.72 −0.283 0.899 04/08
UK 5.53 0.023 0.446 −82.9 25.25 −0.248 0.857 04/22
Italy 6.66 0.010 0.110 −58.0 19.53 −0.238 0.945 04/03
France 6.26 0.012 0.096 −96.9 30.47 −0.353 0.694 04/07
Germany 6.33 0.011 0.103 −83.7 26.80 −0.317 0.862 04/05
Switzerland 4.90 0.006 0.030 −116.0 36.50 −0.463 0.853 03/30
Sweden 3.28 0.026 0.626 −43.75 13.6 −0.123 0.876 04/30

We chose t0 as January 11, 2020 in both (29) and (30). We assumed that yi followed the quasi-Poisson model, such
hat we could fit the two models by the traditional loglinear model with dispersion parameter a(φ) = φ to be estimated
y (5). We assessed the two models by their R2 values, where the R2 value of a GLM was defined as one minus residual
eviance divided by the null deviance. We verified (29) and (30) by implementing them in eleven countries in the world
Table 9), where the peak was estimated by t̂max = t0 − α̂/β̂ with α̂ and β̂ as the MLEs of α and β in the model. We found
hat the results given by the Gamma model were significantly better than those given by the exponential model.

We used our generalized k-means to group models for the 50 states and Washington DC. We modified the model given
y (30) as

log λij = µi + αs log(tj − t0) + βs(tj − t0), (31)

here λij = E(yij), yij was the number of daily new cases from the ith state on the jth date, and αs and βs were the
coefficients given by the sth cluster.

Because we allowed µi to be different within clusters, we were able to account for many state-level variables
simultaneously by µi only in (31). For instance, if the population sizes of two states are different but we conclude that
they belong to the same cluster, then the impact of the population sizes can be completely accounted for by µi in (31).
Using this idea, we can account for the combined effects of governmental restrictions, policies, population densities, and
population demographics only by µi in (31), and this is the advantage of the unsaturated clustering method used in
the data analysis. It is not necessary to develop additional statistical models to account for their separate effects in the
clustering analysis.

After briefly looking at the data, we found that many of daily new cases were zero in January and February and the
United States only had 6 total number of confirmed cases until February 24. We decided to exclude data before February
24 in our analysis. We then applied (31) to the data between February 24 and May 31 and the data between February
24 and July 31, respectively. We looked at their differences because we wanted to know the impact of the two issues
mentioned at the beginning of this section. Both AIC and BIC showed that there were six clusters in the data (Fig. 3). We
then calculated the cluster maps based on k = 6 (Fig. 4). To compare, we also directly used k-means to group estimates of
egression coefficients given by (31) (i.e., based on α̂i and β̂i for the ith state). We found that we were not able to identify
he number of clusters based on the gap statistic (Fig. 5). This means that it is hard to use k-means to group statistical
odels for the patterns of COVID-19 data in the United States. Similar issues also appeared in convex clustering directly
n regression coefficients. Our generalized k-means can overcome the difficulty because it is more powerful than methods
irectly on regression coefficients.
To verify our result, we examined three models. The first was the main effect model. It had only one cluster in (31). The

econd was the resulting (31) with 6 clusters. The third was the interaction effect model, which assumed that each state
as an individual cluster in (31). We calculated the differences of residual deviance between the first and second models,
nd between the first and the third model, respectively. We obtained the partial R2 by the ratio of the two differences. The
artial R2 value interpreted the ratio of residual deviance reduced by the model with k clusters. When k = 6, the partial
2 was 0.9235 for data between February 24 and May 31, and 0.9606 for data between February 24 and July 31, implying
hat the model with six clusters was good enough to interpret the differences among the 50 states and Washington DC.

We evaluated properties of identified clusters by the MLEs of αs and βs with k = 6 in (31) (Table 10). These coefficients
ere directly reported by the generalized k-means. We found that the situation in the entire United States was under
ontrol before May 31 as the signs of β̂s were all negative. For data between February 24 and July 31, the situations in the
tates contained by the first, the fourth, and the sixth cluster became worse, as they were out-of-control. The situations
n the states contained by the second, the third, and the fifth clusters were still under control. This was caused by the
ssue that a lot of people did not keep social distance or stay-at-home order in the summer in these states (according to

ocial media).

14
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Fig. 3. AIC and BIC for number of clusters in generalized k-means based on (30).

Fig. 4. Six clusters identified by BIC in generalized k-means for the period between February 24 to May 31 (left) and the period between February
24 to July 31 (right), respectively.

Table 10
Parameter estimates in the six clusters with a selected state (State) for each cluster based on the Gamma model for
the outbreak of COVID-19 in the United States, where the standard errors are given inside the parenthesis and ×means
out of control.
Cluster State 02/24–05/31 02/24–07/31

α β Peak α β Peak

1 California 10.49(0.62) −0.8750(0.0066) 5/10(2.27) 1.958(0.25) 0.0069(0.0020) ×

2 New York 24.63(0.65) −0.2962(0.0078) 4/3(0.28) 11.05(0.29) −0.1206(0.0030) 4/12
3 Illinois 19.22(0.87) −0.1780(0.0090) 4/28(0.81) 6.48(0.30) −0.0538(0.0026) 5/11
4 Louisiana 21.00(0.72) −0.2378(0.0082) 4/8(0.39) 1.179(0.39) 0.0044(0.0034) ×

5 Minnesota 19.50(4.26) −0.1545(0.0425) 5/17(7.3) 8.010(0.69) −0.0548(0.0056) 6/5
6 Florida 19.39(0.63) −0.2011(0.0068) 4/26(0.42) 1.57(0.31) 0.0178(0.0024) ×
15
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Fig. 5. Gap statistics for number of cluster in k-means for coefficients.

. Discussion

We propose a new clustering method under the framework of the generalized k-means to group GLMs for exponential
family distributions. The method can automatically select the number of clusters if it is combined with GIC. Our theoretical
and simulation results show that the number of clusters can be identified by BIC but not by AIC. Therefore, we recommend
using BIC in finding the number of clusters. As the choice of the dissimilarity measure is flexible, our method can be
extended to other models beyond GLMs. We implement our method to partition loglinear models for the state-level
COVID-19 data until July 31 2020 in the United States and finally we have identified six clusters. In Fall 2020, the situations
in United States and many European countries became worse and the outbreaks became out-of-control. This is left to
future research.

Basically, our generalized k-means can be treated as a modification of k-means++ after the Euclidean distance for
issimilarity between points is replaced by the likelihood ratio statistic for dissimilarity between statistical models. The
asic approach in our method can be migrated to any existing clustering methods, including convex clustering, such that
he modified methods can be used to group statistical models. The idea is to simply replace the distance measure by a
MPU test statistic. Therefore, the impact of our research is not limited to generalizations of k-means or k-means++.
Theoretically, generalized k-means can also be combined with the penalized likelihood approach. This is useful when

he number of explanatory variables exceeds the number of observations within objects. As it is impossible to estimate
oefficients of regression parameters, a variable selection procedure is needed to reduce the number of explanatory
ariables. This is also left to future research.
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