Proofs that I always forget

Andrew Thomas

Exponential potentialities

Bernoulli’s inequality. Let \(x \geq -1 \). Then \((1 + x)^n \geq 1 + nx\).

Proof. We proceed by induction. When \(n = 1 \) we have that \(1 + x \geq 1 + x \). Now suppose that \((1 + x)^n \geq 1 + nx\) holds. Then as \(1 + x \geq 0 \),
\[
(1 + x)^{n+1} = (1 + x)(1 + x)^n \geq (1 + x)(1 + nx)
= 1 + x + nx + nx^2 = 1 + (n + 1)x + nx^2 \geq 1 + (n + 1)x.
\]

\[\square\]

Exponential limit. Let \(x \in \mathbb{R} \). Then
\[
\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.
\]

Proof. We begin by assuming \(x \geq 0 \). Then, the binomial theorem gives us that
\[
\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{n^k} = \sum_{k=0}^{n} \frac{x^k}{k!} \frac{n(n-1) \cdots (n-k+1)}{n^k}
\leq \sum_{k=0}^{n} \frac{x^k}{k!} \leq \sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x.
\]

Furthermore, for \(n \geq m \) we have by \(\binom{n}{k} \frac{x^k}{n^k} \geq 0 \) that
\[
\left(1 + \frac{x}{n}\right)^n \geq \sum_{k=m}^{n} \binom{n}{k} \frac{x^k}{n^k} =: s_{n,m}.
\]

Now, as
\[
\frac{n(n-1) \cdots (n-k+1)}{n^k} = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \to 1,
\]
as \(n \to \infty \) for each fixed \(k \). Hence, \(\liminf_{n \to \infty} s_{n,m} = \sum_{k=0}^{m} \frac{x^k}{k!} \) so we conclude
\[
e^x = \liminf_{m \to \infty} \left(\liminf_{n \to \infty} s_{n,m} \right) \leq \liminf_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \leq \limsup_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \leq e^x.
\]

For large enough \(n \), \(|x/n| \leq 1\) so that
\[
\left(1 - \frac{x}{n}\right)^n \left(1 + \frac{x}{n}\right)^n = \left(1 - \frac{x^2}{n^2}\right)^n \leq 1,
\]
but we also know by Bernoulli’s inequality
\[
\left(1 - \frac{x^2}{n^2}\right)^n \geq 1 - \frac{x^2}{n}.
\]
Taking \(\lim\inf\) and \(\lim\sup\) we get
\[
\lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n \left(1 + \frac{x}{n} \right)^n = 1,
\]
implying that
\[
\lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n = \lim_{n \to \infty} \frac{ \left(1 - \frac{x^2}{n^2} \right)^n } { \left(1 + \frac{x}{n} \right)^n } = e^{-x}.
\]

A trivial corollary as a result of the above proof is that for any \(n\) we have \((1 + x/n)^n \le e^x\).

An interesting logarithmic inequality. For all \(x > 0\) we have that
\[
\log(1 + 1/x) \ge \frac{1}{1 + x}
\]

Proof. First note that for \(x > 0\) we have that
\[
\frac{1}{(x+1)^2} \le \frac{1}{x(x+1)},
\]
thus we have
\[
\int_x^\infty \frac{1}{(t+1)^2} \, dt \le \int_x^\infty \frac{1}{t(t+1)} \, dt = \lim_{y \to \infty} \int_x^y \frac{1}{t} - \frac{1}{t+1} \, dt.
\]

Now, as
\[
\lim_{y \to \infty} \int_x^y \frac{1}{t} - \frac{1}{t+1} \, dt = \lim_{y \to \infty} -\log(1 + 1/t)|_x^y = \log(1 + 1/x),
\]
and
\[
\int_x^\infty \frac{1}{(t+1)^2} \, dt = \frac{1}{1 + x},
\]
the proof is finished.

As a rather interesting corollary to this we can establish that \(e \le (1 + 1/x)^{x+1}\) for any \(x > 0\) – in particular the natural numbers. This is equivalent to showing that \((x+1) \log(1+1/x) \ge 1\) or rather that \(\log(1+1/x) \ge 1/(1 + x)\), which is exactly the result from above.

A technical result for the DeMoivre-Laplace theorem. Let \(0 \le p \le 1\). Furthermore, suppose that for \(k_n(x)\) is a sequence of integers such that \(|k_n(x)| \le n\) and
\[
\frac{k_n(x) - np}{\sqrt{np(1-p)}} \to x,
\]
where \(x \in \mathbb{R}\). Abbreviating \(k_n := k_n(x)\), we have that
\[
\left(\frac{np}{k_n} \right)^{k_n} \left(\frac{n(1-p)}{n-k_n} \right)^{n-k_n} \to e^{-x^2/2},
\]
as \(n \to \infty\).

Proof. We will prove that
\[
k_n \log \left(\frac{np}{k_n} \right) + (n - k_n) \log \left(\frac{n(1-p)}{n-k_n} \right) \to -\frac{x^2}{2},
\]
which implies our result as \(x \to e^x\) a continuous function. If we recognize that
\[
\frac{np}{k_n} = 1 - \frac{k_n - np}{k_n} \quad \text{and} \quad \frac{n(1-p)}{n-k_n} = 1 + \frac{k_n - np}{n-k_n},
\]

Thus we have that as we will now show. This convergence follows as a result of the fact that

\[\log(1 + x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}. \]

Thus we have that

\[\log \left(\frac{np}{k_n} \right) = -\frac{(k_n - np)}{k_n} - \frac{1}{2} \left(\frac{k_n - np}{k_n} \right)^2 + O(n^{-3/2}), \]

and

\[\log \left(\frac{n(1 - p)}{n - k_n} \right) = -\frac{(k_n - np)}{n - k_n} - \frac{1}{2} \left(\frac{k_n - np}{n - k_n} \right)^2 + O(n^{-3/2}). \]

Hence, we arrive at

\[
k_n \log \left(\frac{np}{k_n} \right) + (n - k_n) \log \left(\frac{n(1 - p)}{n - k_n} \right) = k_n \left[-\frac{(k_n - np)}{k_n} - \frac{1}{2} \left(\frac{k_n - np}{k_n} \right)^2 + O(n^{-3/2}) \right] + (n - k_n) \left[-\frac{(k_n - np)}{n - k_n} - \frac{1}{2} \left(\frac{k_n - np}{n - k_n} \right)^2 + O(n^{-3/2}) \right]
\]

\[= -\frac{(k_n - np)^2}{2k_n} - \frac{(k_n - np)^2}{2(n - k_n)} + O(n^{-1/2}) \to -\frac{x^2}{2}, \]

as we will now show. This convergence follows as a result of the fact that

\[-\frac{(k_n - np)^2}{2k_n} = -\frac{np(1-p)}{k_n} \left(\frac{(k_n - np)^2}{2np(1-p)} \right) \to -\frac{x^2(1-p)}{2}, \]

as \(x \mapsto -x^2 \) is continuous and \(k_n/np \to 1 \). The other case follows similarly. To demonstrate \(k_n/np \to 1 \) just take

\[\frac{k_n}{np} = 1 + \frac{k_n - np}{np} = 1 + \frac{1-p}{np} \frac{k_n - np}{\sqrt{np(1-p)}} \to 1 + 0 \cdot x = 1. \]

\[\square \]

Expo-linear inequalities. Let \(x \in \mathbb{R} \). Then \(1 + x \leq e^x \). For \(x \geq 0 \), we have \(e^{-x^2/2} \leq e^x (1 + x)^{-(1+x)} \).

Proof. If \(y \geq 0 \), then \(1 \geq 1/(1+y) \) hence

\[\log(1 + x) = \int_0^x \frac{1}{1+y} \, dy \leq \int_0^x 1 \, dy = x, \]

though this is also obvious due to the series representation of \(e^x \). For \(x \leq 0 \), let \(z := -x \) and let us show that \(1 - z \leq e^{-z} \), or \(1 - e^{-z} \leq z \) for \(z \geq 0 \). This follows, as

\[1 - e^{-z} = \int_0^z e^{-y} \, dy \leq \int_0^z 1 \, dy = z. \]

We integrate again using our first inequality to get

\[\int_0^x \log(1 + y) \, dy \leq \int_0^x y \, dy. \]

As

\[\int_0^x \log(1 + y) \, dy = x \log(1 + x) - \int_0^x \frac{y}{1+y} \, dy = x \log(1 + x) - x + \log(1 + x) = (1 + x) \log(1 + x) - x, \]

we get that \((1 + x) \log(1 + x) \leq x + x^2/2 \) or \((1 + x)^{1+x} \leq e^{e^x/2} \), so that we get \(e^{-x^2/2} (1 + x)^{1+x} \leq e^x \) or

\[e^{-x^2/2} \leq e^x (1 + x)^{-(1+x)}. \]

\[\square \]
Though, as a final note for \(x \geq 0 \), it is rather obvious that our first “expo-linear” inequality holds as \(e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \geq \sum_{k=0}^{n} \frac{x^k}{k!} \) for any \(n \in \mathbb{N} \).

Binomial power bounds. If \(n, m, k \) non-negative integers such that \(n \geq k \) then we have that

\[
\binom{n + m}{k + 1} - \binom{n}{k + 1} \leq \frac{m(n + m)^k}{k!}
\]

Proof. We will proceed by induction. First note that if \(k = 0 \) then we have equality. If \(m = 1 \) and \(k \geq 2 \) then

\[
\binom{n + 1}{k + 1} - \binom{n}{k + 1} = \frac{(n + 1) \cdots (n + 1 - k) - n(n - 1) \cdots (n - k)}{(k + 1)!}
\]

\[
= \frac{n(n - 1) \cdots (n - k + 1)(n + 1 - (n - k))}{(k + 1)!}
\]

\[
= \binom{n}{k} \leq \frac{n^k}{k!}.
\]

Now if we assume the desired inequality holds for \(m \), then

\[
\binom{n + m + 1}{k + 1} - \binom{n}{k + 1} = \binom{n + m + 1}{k + 1} - \binom{n + m}{k + 1} + \binom{n + m}{k + 1} - \binom{n}{k + 1}
\]

\[
\leq \binom{n + m}{k} + \frac{m(n + m)^k}{k!}
\]

\[
\leq \frac{(m + 1)(n + m + 1)^k}{k!},
\]

hence proved. \(\square \)

Topological curiosities

Continuous images of compact sets are compact. Let \(f : X \to Y \) be a continuous function from the space \(X \) into the space \(Y \). If \(C \subset X \) is compact, then \(f(C) \) is compact.

Proof. If \(\{V_\alpha\}_\alpha \) is an open cover of \(f(C) \), and if \(U_\alpha = f^{-1}(V_\alpha) \), then \(\{U_\alpha\}_\alpha \) an open cover of \(C \). Let \(U_{\alpha_1}, \ldots, U_{\alpha_n} \) be a finite subcover of \(C \), that is

\[C \subset \bigcup_{\alpha=1}^{\alpha_n} U_\alpha = f^{-1}(\bigcup_{\alpha=1}^{\alpha_n} V_\alpha), \]

which implies that if \(x \in C \), then \(f(x) \in \bigcup_{\alpha=1}^{\alpha_n} V_\alpha \). Then as \(y = f(x) \in f(C) \) for some \(x \in C \) by definition this entails that \(f(C) \subset \bigcup_{\alpha=1}^{\alpha_n} V_\alpha \) and hence \(f(C) \) compact. \(\square \)

Product of the subspace topology is the same as the subspace topology of a product. Suppose that \(Y_\alpha \) is a subspace of \(X_\alpha \), for \(\alpha \in I \) for some index set \(I \). Endow \(Y := \prod_{\alpha \in I} Y_\alpha \) and \(X := \prod_{\alpha \in I} X_\alpha \) with their respective product topologies. Then \(Y \) is a subspace of \(X \) with respect to the product topology of \(X \).

Proof. First, let \(\mathcal{T}_\alpha \) be the topology of \(X_\alpha \) and let \(\mathcal{T}'_\alpha \) be the subspace topology of \(Y_\alpha \), that is \(\mathcal{T}'_\alpha = \{U \cap Y_\alpha : U \in \mathcal{T}_\alpha \} \). Now, for any \(k \in \mathbb{N} \) and \(\alpha_1, \ldots, \alpha_k \in I \) define the projection mapping \(\pi_{\alpha_1, \ldots, \alpha_k} : X \to X_{\alpha_1} \times \cdots \times X_{\alpha_k} \) by \(\pi_{\alpha_1, \ldots, \alpha_k}(x) = (x_{\alpha_1}, \ldots, x_{\alpha_k}) \). Let \(\pi'_{\alpha_1, \ldots, \alpha_k} \) be the corresponding projection for \(Y \). Let us take \(x := (x_\alpha)_{\alpha \in I} \) to be a typical element of \(X \). Let \(\mathcal{T}' \) be the topology with the basis elements

\[
(\pi'_{\alpha_1, \ldots, \alpha_k})^{-1}(U'_{\alpha_1} \times \cdots \times U'_{\alpha_k}),
\]
where $U'_{\alpha_i} \in \mathcal{T}'_{\alpha_i}$ for each $i = 1, \ldots, k$. That is, the product topology of the Y_{α} subspaces. Now let \mathcal{T}'' be the subspace topology of Y in X. That is,
$$\mathcal{T}'' = \{U \cap Y : U \in \mathcal{T}\},$$
which has basis elements $\pi_{\alpha_1,\ldots,\alpha_k}^{-1}(U_{\alpha_1} \times \cdots \times U_{\alpha_k}) \cap Y$ for $U_{\alpha_i} \in \mathcal{T}_{\alpha_i}$. The goal is to show that $\mathcal{T}' = \mathcal{T}''$.

Suppose that $y \in Y$ and let $B \in \mathcal{T}'$ be a basis element containing y. Then $y \in (\pi_{\alpha_1,\ldots,\alpha_k}^{-1}(U'_{\alpha_1} \times \cdots \times U'_{\alpha_k})$ for some $\alpha_1, \ldots, \alpha_k \in I$. However, for each i, $U'_{\alpha_i} = U_{\alpha_i} \cap Y_{\alpha_i}$ for some $U_{\alpha_i} \in \mathcal{T}_{\alpha_i}$ and thus,
$$\begin{align*}
&\left(\pi_{\alpha_1,\ldots,\alpha_k}^{-1}(U'_{\alpha_1} \times \cdots \times U'_{\alpha_k})
\right) \\
&\quad = \left\{ x \in Y : \pi'_{\alpha_1,\ldots,\alpha_k}(x) \in \prod_{i=1}^{k}(U_{\alpha_i} \cap Y_{\alpha_i}) \right\} \\
&\quad = \left\{ x \in Y : \pi'_{\alpha_1,\ldots,\alpha_k}(x) \in \prod_{i=1}^{k}U_{\alpha_i} \cap \prod_{i=1}^{k}Y_{\alpha_i} \right\} \\
&\quad = Y \cap \left\{ x \in X : \pi_{\alpha_1,\ldots,\alpha_k}(x) \in \prod_{i=1}^{k}U_{\alpha_i} \right\} \\
&\quad = Y \cap \pi_{\alpha_1,\ldots,\alpha_k}(U_{\alpha_1} \times \cdots \times U_{\alpha_k}) \in \mathcal{T}'',
\end{align*}$$
and y obviously contained in the latter set. Symmetry furnishes us with the other inclusion. Hence we have that $\mathcal{T}' = \mathcal{T}''$. □

This theorem gives a useful corollary to Tychonoff’s theorem. Namely, if K_i are compact subspaces of X_i, then $\prod_{i \in I} K_i$ is compact when endowed with the product-of-subspace topology. The above implies that it is compact when endowed with the subspace-of-product topology, as a subspace of $\prod_{i \in I} X_i$. Hence $\prod_{i \in I} K_i$ is compact in the sense that every open cover of sets in $\prod_{i \in I} X_i$ has a finite subcover.

As it concerns probability, this implies that any cartesian product of probability measure is tight if each of marginal measures are tight.

Unaccompanied lemmas

Limit infimum and indicators. Let $\{A_n\}_{n \geq 1}$ be subsets of a set X. Then for every $x \in X$ we have
$$1_{\lim\inf_{n \to \infty} A_n}(x) = \lim\inf_{n \to \infty} 1_{A_n}(x),$$
and the corresponding fact holds for the limit supremum.

Proof. We first mention that if $s_n \in \mathbb{R}$ and $s = \lim inf s_n$ then for every $y < s$ there exists an N_y such that $s_n > y$ for $n \geq N_y$. Now, suppose that $\lim inf_{n \to \infty} 1_{A_n}(x) = 1$. Then by the aforementioned property of the limit infimum, we have that there exists an N such that if $n \geq N$ then $1_{A_n}(x) = 1$, as our sequence can only take the values 0 or 1. Hence, $x \in \lim inf A_n$ so that $1_{\lim inf_{n \to \infty} A_n}(x) = 1$.

Now suppose that $1_{\lim inf_{n \to \infty} A_n}(x) = 1$, then by definition of limit infimum for sets, there exists some N such that for $n \geq N$ we have that $x \in A_n$ which is equivalent to $1_{A_n}(x) = 1$. Hence, $1_{A_n}(x) \to 1$ and hence $\lim inf_{n \to \infty} 1_{A_n}(x) = 1$. Thus
$$1_{\lim inf_{n \to \infty} A_n}(x) = 1 \iff \lim inf_{n \to \infty} 1_{A_n}(x) = 1,$$
and clearly the cases when either of these are zero are equivalent as well. □

Double convergence. Let $f_n : X \to Y$ be a sequence of continuous functions from a space X to a metric space (Y,d). Suppose that $f_n \to f$ uniformly and that $x_n \to x$. Then $f_n(x_n) \to f(x)$.
Proof. Let $\epsilon > 0$ be given. By the uniform limit theorem, we have that f is continuous. Hence we can find an N_1 such that if $n \geq N_1$ then $d(f(x), f(x_n)) < \epsilon/2$. Additionally, as $\{f_n\}$ converges to f uniformly then we can find an N_2 such that if $n \geq N_2$ then $d(f_n(t), f(t)) < \epsilon/2$ for all $t \in X$. So if $n \geq N_1 \lor N_2$, then
\[
d(f_n(x_n), f(x)) \leq d(f(x), f(x_n)) + d(f(x_n), f_n(x_n)) < \epsilon/2 + \epsilon/2 = \epsilon.
\]
\[\square\]

Remark 1. The uniformity assumption is essential. Let us take $f_n : [0,1] \rightarrow [0,1]$ be defined by $f_n(x) = x^n$. Then for each $x \in [0,1]$ we have
\[
\lim_{n \rightarrow \infty} f_n(x) \rightarrow \delta_1(x),
\]
the dirac delta function defined on the unit interval. Now, if we take $x_n = 1 - \frac{1}{n}$ then clearly $x_n \rightarrow 1$ as $n \rightarrow \infty$. However,
\[
\lim_{n \rightarrow \infty} f_n(x_n) = \lim_{n \rightarrow \infty} \left(1 - \frac{1}{n}\right)^n = e^{-1} \neq 1.
\]
Note that
\[
\sup_{x \in [0,1]} |f_n(x) - \delta_1(x)| = 1,
\]
for all n, so does not converge to 0.

A canonical outer measure for the Carathéodory’s Extension Theorem. Let μ_0 be a pre-measure on an algebra \mathcal{A} in X. Define $s : \mathcal{P}(X) \rightarrow \mathcal{P}(\mathbb{R})$ as
\[
s(E) := \left\{ \sum_{n=1}^{\infty} \mu_0(E_n) : E \subset \bigcup_{n=1}^{\infty} E_n, E_n \in \mathcal{A} \text{ for all } n \right\}
\]
Then we have that μ^* defined by $\mu^*(E) := \inf s(E)$ for all $E \subset X$ is an outer measure.

Proof. First we note that $\emptyset \subset \emptyset$ and so $\mu^*(\emptyset) = \mu_0(\emptyset) = 0$. We now aim to show monotonicity. If $E \subset F \subset \bigcup_{n=1}^{\infty} F_n$ with $F_n \in \mathcal{A}$ then we have that $s(F) \subset s(E)$ which implies $\mu^*(E) \leq \mu^*(F)$ as if $A \subset B$ are subsets of $[-\infty, \infty]$ then we have that inf $A \geq$ inf B.

Finally, we must show countable subadditivity. By definition of infimum for any $\epsilon > 0$ we can find a sequence $E_{n,1}, E_{n,2}, \ldots$ of sets in \mathcal{A} such that $\mu^*(E_{n,1}) + \epsilon 2^{-n} > \sum_{m=1}^{\infty} \mu_0(E_{n,m})$, with $E_n \subset \bigcup_{m=1}^{\infty} E_{n,m}$. Thus, it is clear that
\[
\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{(n,m) \in \mathbb{N}^2} E_{n,m},
\]
and as the right-hand side is a countable union of sets in \mathcal{A}, invoking Tonelli’s theorem we have
\[
\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leq \sum_{(n,m) \in \mathbb{N}^2} \mu_0(E_{n,m}) \leq \sum_{n=1}^{\infty} \mu^*(E_n) + \epsilon,
\]
As ϵ is arbitrary we have our result. \[\square\]

Uniform continuity and modulus. Let $f : X \rightarrow Y$ be a continuous function from a metric space (X, d_X) to another metric space (Y, d_Y). Define
\[
\omega_\delta(f) := \sup \{d_Y(f(s), f(t)) : d_X(s,t) \leq \delta\},
\]
to be the modulus of continuity of f. Then f is uniformly continuous if and only if $\omega_\delta(f) \rightarrow 0$ as $\delta \rightarrow 0$.

Proof. Suppose that f is uniformly continuous. Let us take $\delta_n \rightarrow 0$ and suppose that $\omega_{\delta_n}(f) \not\rightarrow 0$. We proceed by the following steps:
1. There exists an \(\epsilon > 0 \) such that for all \(N \), there exists an \(n \geq N \) such that \(\omega_{\delta_n}(f) \geq \epsilon \).

2. Now, by uniform continuity there exists a \(\delta > 0 \) such that if \(d_X(s, t) < \delta \), then \(d_Y(f(s), f(t)) < \epsilon/2 \).

3. By convergence of \(\{\delta_n\} \) there exists an \(N_\delta \) such that if \(n \geq N_\delta \) then \(\delta_n < \delta \).

4. Finally, there exists an \(n_0 \geq N_\delta \) such that \(\omega_{\delta_{n_0}}(f) \geq \epsilon \).

However, as \(d_X(s, t) \leq \delta_{n_0} < \delta \) then \(\omega_{\delta_{n_0}} \leq \epsilon/2 \), a contradiction.

Now suppose that \(\omega_\delta(f) \to 0 \) as \(\delta \to 0 \). Then for every \(\epsilon > 0 \) there exists an \(\eta > 0 \) such that if \(\delta < \eta \) then \(\omega_\delta(f) < \epsilon \). Now if \(d_X(s, t) \leq \delta \) then \(d_Y(f(s), f(t)) \leq \omega_\delta(f) < \epsilon \). Hence, \(f \) is uniformly continuous.

\[\square\]

Measures and the “standard” machine

Pointwise limits of measurable functions are measurable. Let \((X, \mathcal{B}) \) be a measurable space. Suppose that \(f_n : X \to [0, \infty] \) are a sequence of measurable functions that convergence pointwise to a limit \(f : X \to [0, \infty] \). Show that \(f \) is measurable.

Proof. For \(f \) to be measurable it is necessary and sufficient that

\[\{x \in X : f(x) \geq a\} \in \mathcal{B},\]

for every \(a \geq 0 \), by theorem 1.3.1 in [3].

By our measurability hypothesis, we have that for every \(n \in \mathbb{N} \) and \(a \geq 0 \) that \(\{x \in X : f_n(x) \geq a\} \in \mathcal{B} \).

Suppose that \(x \) is such that \(f(x) \geq a \). Then for any \(\epsilon > 0 \) there exists an \(N \) such that for all \(n \geq N \) we have \(a \leq f(x) \leq f_n(x) + \epsilon \). Hence for every \(m \in \mathbb{N} \),

\[\{x \in X : f(x) \geq a\} \subset \bigcap_{m=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{ x \in X : f_n(x) \geq a - \frac{1}{m} \right\}.\]

Now, suppose that \(x \) is such that \(f(x) < a \), and hence \(f(x) < a - 1/m \) for some \(m \in \mathbb{N} \). Then there exists some \(m \) such that for every \(N \) we can find an \(n \geq N \) such that \(f_n(x) < a - 1/m \). Hence the two sets are equal and the measurability of \(f \) follows from the fact that \(\mathcal{B} \) a \(\sigma \)-algebra.

\[\square\]

Integral with respect to Dirac measure. Let \(f : X \to \mathbb{C} \) be a complex-valued function on the measurable space \((X, \mathcal{B}) \). Assume that \(f \) is \(\mathcal{B} \)-measurable. Then if \(x \in X \) we have that

\[\int_X f(y) \delta_x(dy) = f(x)\]

Proof. Let \(A \in \mathcal{B} \). Then by definition of an integral of a simple function with respect to an abstract measure, we have that

\[\int_X 1_A(y) \delta_x(dy) = \delta_x(A) = 1_A(x),\]

as desired. Similarly, we have for a simple function \(\sum_{i=1}^{m} c_i 1_{A_i} \) with non-negative constants \(c_1, \ldots, c_m \) that

\[\int_X \sum_{i=1}^{m} c_i 1_{A_i}(y) \delta_x(dy) = \sum_{i=1}^{m} c_i \delta_x(A_i) = \sum_{i=1}^{m} c_i 1_{A_i}(x),\]

again by the aforementioned properties for integrals of simple functions. Now for any \(\mathcal{B} \)-measurable \(f \geq 0 \) there exist simple functions \(f_n \) such that \(f_n \uparrow f \) pointwise. Then, by monotone convergence we have

\[f_n(x) = \int_X f_n(y) \delta_x(dy) \uparrow \int_X f(y) \delta_x(dy),\]

which implies \(\int_X f(y) \delta_x(dy) = f(x) \) by the uniqueness of limits in \(\mathbb{R} \). The final parts follow from the fact we can break a real (complex) function into its positive and negative (real and imaginary) parts.

\[\square\]
Independence with expectations. Let \(X_1, X_2, \ldots, X_k \) be random elements of a measurable space \((X, \mathcal{B})\) defined on some probability space \((\Omega, \mathcal{F}, P)\). Then \(X_1, X_2, \ldots, X_k \) independent if and only if for every \(f_1, \ldots, f_k : X \to \mathbb{R} \) bounded and \(\mathcal{B} \)-measurable we have

\[
E \left[\prod_{i=1}^{k} f_i(X_i) \right] = \prod_{i=1}^{k} E \left[f_i(X_i) \right]
\]

Proof. As an aside, we note that

An infinite collection of random elements is independent if every finite subcollection is independent.

If we let \(f_i := 1_{A_i} \) for some \(A_i \in \mathcal{B} \) then we have

\[
E \left[\prod_{i=1}^{k} 1_{A_i}(X_i) \right] = P(\cap_{i=1}^{k} \{ X_i \in A_i \}) = \prod_{i=1}^{k} P(X_i \in A_i) = \prod_{i=1}^{k} E \left[1_{A_i}(X_i) \right].
\]

Now let us suppose that \(X_1, X_2, \ldots, X_k \) are independent. Then clearly for indicator functions \(f_i \) as just described we have that the expectations factor. We proceed now to simple functions \(f_i := \sum_{j=1}^{n_i} c_{i,j} 1_{A_{i,j}} \), where \(A_{i,j} \in \mathcal{B} \), and \(c_{i,j} \geq 0 \). First let \(J_i := \{1, \ldots, n_i\} \) and let \(J := J_1 \times J_2 \times \cdots \times J_k \).

\[
E \left[\prod_{i=1}^{k} f_i(X_i) \right] = E \left[\prod_{i=1}^{k} \left(\sum_{j=1}^{n_i} c_{i,j} 1_{A_{i,j}}(X_i) \right) \right] = \sum_{(j_1, j_2, \ldots, j_k) \in J} \prod_{i=1}^{k} c_{i,j_i} E \left[1_{A_{i,j_i}}(X_i) \right]
\]

Generalizing to non-negative functions, let us take for each \(i \) a sequence of simple functions \(f_{i,n} \) as previously described, such that \(f_{i,n} \uparrow f_i \), with \(f_i : X \to [0, \infty) \) bounded \(\mathcal{B} \)-measurable functions. Boundedness guarantees all our expectations exist. For each \(n \) we have that

\[
E \left[\prod_{i=1}^{k} f_{i,n}(X_i) \right] = \prod_{i=1}^{k} E \left[f_{i,n}(X_i) \right].
\]

However, the monotone convergence theorem and the fact that the product of limits is the limit of the products (which entails \(\prod_{i=1}^{k} f_{i,n} \uparrow \prod_{i=1}^{k} f_i \)), gives us our result. Finally, suppose that for each \(i \) we have that \(f_i : X \to \mathbb{R} \) are \(\mathcal{B} \)-measurable and bounded. Then \(f_i = f_i^+ - f_i^- \) and each of these functions are bounded. Now,

\[
E \left[\prod_{i=1}^{k} f_i(X_i) \right] = \prod_{i=1}^{k} E \left[f_i(X_i) \right],
\]

comes as result that \(\prod_{i=1}^{k} f_i^\pm \) is a bounded, non-negative measurable function. \(\square \)

Linear change of variable – Lebesgue integral. Let \(f : \mathbb{R}^d \to [0, \infty] \) and \(T : \mathbb{R}^d \to \mathbb{R}^d \) be an invertible linear transformation. Then

\[
\int_{\mathbb{R}^d} f(T^{-1}(x)) \, dx = |\det(T)| \int_{\mathbb{R}^d} f(x) \, dx
\]

Proof. We begin by noting the following result:

If \(A \subset \mathbb{R}^d \) is measurable, then so is \(T(A) \subset \mathbb{R}^d \) and \(m(T(A)) = |\det(T)|m(A) \),
where m is d-dimensional Lebesgue measure (cf. [1]). Suppose that $T^{-1}(x) \in A$ for some $x \in \mathbb{R}^d$. By T invertible, it is bijective and hence $x \in T(A)$. If $x \in T(A)$, then $x = T(y)$ for some $y \in A$ and hence $T^{-1}(x) = T^{-1}(T(y)) = y \in A$. The other direction is fairly obvious. Hence, if $f := 1_A$, we get

$$\int_{\mathbb{R}^d} 1_A(T^{-1}(x)) \, dx = \int_{\mathbb{R}^d} 1_{T(A)}(x) \, dx = m(T(A)) = |\det(T)| m(A),$$

by what was mentioned at the beginning of the proof. Now suppose that $f := \sum_{i=1}^n c_i 1_{A_i}$, where A_i measurable and $c_i \geq 0$ and $m(A_i) < \infty$ for all i. That is, f a non-negative bounded simple function with finite measure support. Then

$$\int_{\mathbb{R}^d} f(T^{-1}(x)) \, dx = \int_{\mathbb{R}^d} \sum_{i=1}^n c_i 1_{A_i}(T^{-1}(x)) \, dx = \sum_{i=1}^n c_i \int_{\mathbb{R}^d} 1_{T(A_i)}(x) \, dx = |\det(T)| \sum_{i=1}^n c_i 1_{A_i}(x) \, dx = |\det(T)| \int_{\mathbb{R}^d} f(x) \, dx.$$

Now if $f : \mathbb{R}^d \to [0, \infty]$ is measurable, then there exist non-negative bounded simple functions with finite measure support f_n such that $f_n \uparrow f$ pointwise [1]. The monotone convergence theorem and the equality just established furnishes our final result.

\[\square\]

The probabilistic touch

Separating class theorem. Let probability measures P and Q be defined on the measurable space (Ω, \mathcal{F}). Suppose that $P(A) = Q(A)$ for all $A \in \mathcal{P}$, where \mathcal{P} a π-system. Then $P(A) = Q(A)$ for all $A \in \sigma(\mathcal{P})$. If $\mathcal{F} = \sigma(\mathcal{C})$ for some collection \mathcal{C} of sets, then $P(A) = Q(A)$ for all $A \in \mathcal{F}$ if $\mathcal{C} \subset \sigma(\mathcal{P})$.

Proof. Begin by denoting

$$\mathcal{L} = \{ A \in \sigma(\mathcal{P}) : P(A) = Q(A)\}.$$

Clearly we have that $\mathcal{L} \subset \sigma(\mathcal{P})$. If we can show that \mathcal{L} a λ-system, then by the $\pi - \lambda$ theorem we have that $\mathcal{P} \subset \mathcal{L}$ implies that $\sigma(\mathcal{P}) \subset \mathcal{L}$. By the fact that $P(\Omega) = Q(\Omega) = 1$, $\Omega \in \mathcal{L}$. Now suppose that $A \in \mathcal{L}$. Then one sees that $P(A^c) = 1 - P(A) = 1 - Q(A) = Q(A^c)$ so $A^c \in \mathcal{L}$. Now take a sequence of disjoint sets $A_1, A_2, \cdots \in \mathcal{L}$. We observe by countable additivity that

$$P(\cup_{i} A_i) = \sum_{i} P(A_i) = \sum_{i} Q(A_i) = Q(\cup_{i} A_i),$$

because identical sequences must have the same limit – or rather $\lim_{n \to \infty} \sum_{i=1}^n P(A_i) = \lim_{n \to \infty} \sum_{i=1}^n Q(A_i)$. Therefore, \mathcal{L} is a λ-system and thus $\sigma(\mathcal{P}) \subset \mathcal{L}$ so $\sigma(\mathcal{P}) = \mathcal{L}$ and P and Q coincide on $\sigma(\mathcal{P})$.

For the additional condition stated above, we see that as $\sigma(\mathcal{C})$ minimal, then $\sigma(\mathcal{C}) \subset \sigma(\mathcal{P})$ and so P and Q coincide on \mathcal{F}. \[\square\]

Countable totality. Let us take the probability space (Ω, \mathcal{F}, P) and let $\{A_\alpha\}$ be an uncountable family of disjoint subsets of Ω measurable with respect to \mathcal{F}. Then at most only countably many sets in $\{A_\alpha\}$ have positive probability.

Proof. Let $A_n := \{ \alpha : P(A_\alpha) \geq \frac{1}{n} \}$. This implies that $|A_n| \leq n$ as otherwise if $|A_n| > n$ for some N then

$$P\left(\bigcup_{\alpha \in A_n} A_\alpha \right) = \sum_{\alpha \in A_n} P(A_\alpha) > 1,$$

a contradiction. Now we aim to show that $A := \{ \alpha : P(A_\alpha) > 0 \} = \cup_n A_n$. The latter set is clear contained in the first. Now suppose that $P(A_n) > 0$. Then there exists an $\epsilon > 0$ such that $P(A_\alpha) > \epsilon$ and an N such that $1/n < \epsilon$ for $n \geq N$. Thus $\alpha \in A_N$ so we conclude that $A = \cup_n A_n$. Hence, as each A_n finite then we have that A at most countable. \[\square\]
Measurability preserves independence. Let \(X \) and \(Y \) be independent random variables defined on a probability space \((\Omega, \mathcal{F}, P)\) and let \(f, g \) be measurable functions. Then \(f(X), g(Y) \) are independent.

Proof. Independence implies that for every \(A, B \in \mathcal{B}(\mathbb{R}) \), the Borel \(\sigma \)-algebra on the real line, that

\[
P(X \in A, Y \in B) = P(X \in A)P(Y \in B).
\]

If we note that as \(f, g : \mathbb{R} \to \mathbb{R} \) are measurable this implies for every \(C \in \mathcal{B}(\mathbb{R}) \) that \(f^{-1}(C), g^{-1}(C) \in \mathcal{B}(\mathbb{R}) \).

Now, suppose that \(\omega \in \{ f(X) \in A \} \), this is the same as saying \(f(X(\omega)) \in A \), which is equivalent to the statement \(X(\omega) \in f^{-1}(A) \). Thus \(\{ f(X) \in A \} = \{ X \in f^{-1}(A) \} \). Using the same argument for \(g(Y) \) we have for every \(A, B \in \mathcal{B}(\mathbb{R}) \) that

\[
P(f(X) \in A, g(Y) \in B) = P(f(X) \in f^{-1}(A), Y \in g^{-1}(B))
\]

\[
= P(f(X) \in f^{-1}(A))P(Y \in g^{-1}(B))
\]

\[
= P(f(X) \in A)P(g(Y) \in B).
\]

\(\square \)

Correlation is less than 1 in absolute value. Let \(X, Y \in L^2 \). Then if we define

\[
\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}},
\]

then \(|\rho_{X,Y}| \leq 1 \).

Proof. Suppose first that \(E[X] = E[Y] = 0 \). Then Jensen’s inequality and Cauchy-Schwarz implies that

\[
|\rho_{X,Y}| = \frac{|E[XY]|}{\sqrt{E[X^2]E[Y^2]}} \leq \frac{E|XY|}{\sqrt{E[X^2]E[Y^2]}} \leq \sqrt{\frac{E[X^2]E[Y^2]}{E[X^2]E[Y^2]}} \leq 1.
\]

Now if \(E[X] = \mu_X \) and \(E[Y] = \mu_Y \), and we let \(X' := X - \mu_X \) and \(Y' := Y - \mu_Y \) then we have \(E[X'] = E[Y'] = 0 \). If we note the equality

\[
\rho_{X',Y'} = \frac{E[XY - \mu_X Y - X \mu_Y + \mu_X \mu_Y]}{\sqrt{E[(X - \mu_X)^2]E[(Y - \mu_Y)^2]}} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = \rho_{X,Y},
\]

and that \(|\rho_{X',Y'}| \leq 1 \) from above, this implies that \(|\rho_{X,Y}| \leq 1 \).

\(\square \)

Integrate out to get conditional expectation. Let \(X_1, \ldots, X_k, X_{k+1}, \ldots, X_n \) be independent random variables defined on \((\Omega, \mathcal{F}, P)\), where \(X_i \) has the distribution \(F_i \). Let us define measurable functions \(\phi : \mathbb{R}^n \to \mathbb{R} \) and \(g : \mathbb{R}^k \to \mathbb{R} \) by

\[
g(x_1, \ldots, x_k) = E[\phi(x_1, \ldots, x_k, X_{k+1}, \ldots, X_n)] = \int_{\mathbb{R}^{n-k}} \phi(x_1, \ldots, x_n) dF_{k+1}(dx_{k+1}) \ldots dF_n(dx_n).
\]

Assume that \(E[\phi(X_1, \ldots, X_n)] < \infty \). Then we have that

\[
E[\phi(X_1, \ldots, X_n)](X_1, \ldots, X_k) = g(X_1, \ldots, X_k).
\]

Proof. We must first assess whether \(g(X_1, \ldots, X_k) \in \sigma(X_1, \ldots, X_k) \). As \(g \) is measurable (by Fubini’s theorem), then for every \(A \in \mathcal{B}(\mathbb{R}) \) we have that

\[
\{ \omega \in \Omega : g(X_1(\omega), \ldots, X_k(\omega)) \in A \} = \{ \omega \in \Omega : (X_1(\omega), \ldots, X_k(\omega)) \in g^{-1}(A) \} \in \sigma(X_1, \ldots, X_k),
\]

by definition. Now it remains to show that for every \(A \in \sigma(X_1, \ldots, X_k) \) that

\[
\int_A \phi(X_1, \ldots, X_n) dP = \int_A g(X_1, \ldots, X_k) dP.
\]
Now, as $A \in \sigma(X_1, \ldots, X_k)$ then $A = \{\omega \in \Omega : (X_1(\omega), \ldots, X_k(\omega)) \in C\}$ for some $C \in \mathcal{B}(\mathbb{R}^k)$, so we have

\[
\int_A \phi(X_1, \ldots, X_n) \, dP = \int_\Omega \phi(X_1, \ldots, X_n) 1_C(X_1, \ldots, X_k) \, dP \\
= \int_{\mathbb{R}^n} \phi(x_1, \ldots, x_n) 1_C(x_1, \ldots, x_k) F_1(dx_1) \cdots F_n(dx_n) \\
= \int_{\mathbb{R}^k} 1_C(x_1, \ldots, x_k) F_1(dx_1) \cdots F_k(dx_k) \int_{\mathbb{R}^{n-k}} \phi(x_1, \ldots, x_n) F_{k+1}(dx_{k+1}) \cdots F_n(dx_n) \\
= \int_{\mathbb{R}^k} g(x_1, \ldots, x_k) 1_C(x_1, \ldots, x_k) F_1(dx_1) \cdots F_k(dx_k) \\
= \int_A g(X_1, \ldots, X_k) \, dP.
\]

This is because of independence, independence and Fubini’s theorem. Note that if $A = \mathbb{R}^k$ then we get the useful result,

\[
E[\phi(X_1, \ldots, X_n)] = \int_{\mathbb{R}^k} g(X_1, \ldots, X_k) F_1(dx_1) \cdots F_k(dx_k).
\]

\[\square\]

A NOTE ON DENSITIES—If μ and ν are σ-finite measures on a measurable space (X, \mathcal{B}). If ν is absolutely continuous with respect to μ then there exists a function $f : X \to [0, \infty]$, measurable with respect to \mathcal{B}, such that for $A \in \mathcal{B}$ such that

\[
\nu(A) = \int_A f(x) \, d\mu(x).
\]

Scheffé’s theorem. Suppose that probability measures P_n and P have densities f_n and f with respect to a measure μ on measurable space (X, \mathcal{B}) where X a metric space. Then we have that

\[
d_{TV}(P_n, P) = \sup_{A \in \mathcal{B}} |P_n(A) - P(A)| = \frac{1}{2} \int_X |f_n(x) - f(x)| \, d\mu(dx) \to 0,
\]

as $n \to \infty$ if $f_n(x) \to f(x)$ a.s. with respect to μ.

Proof. We know that

\[
P_n(X) - P(X) = \int_X f_n(x) - f(x) \, d\mu(dx) = 0,
\]

and hence for any $A \in \mathcal{B}$ we have that

\[
0 = \int_A f_n(x) - f(x) \, d\mu(dx) + \int_{A^c} f_n(x) - f(x) \, d\mu(dx) \\
\Leftrightarrow \int_A f_n(x) - f(x) \, d\mu(dx) = -\int_{A^c} f_n(x) - f(x) \, d\mu(dx) \\
\Rightarrow |\int_A f_n(x) - f(x) \, d\mu(dx)| = |\int_{A^c} f_n(x) - f(x) \, d\mu(dx)|.
\]

Therefore, we have that

\[
2|P_n(A) - P(A)| = 2|\int_A f_n(x) - f(x) \, d\mu(dx)| \\
= |\int_A f_n(x) - f(x) \, d\mu(dx)| + |\int_{A^c} f_n(x) - f(x) \, d\mu(dx)| \\
\leq \int_A |f_n(x) - f(x)| \, d\mu(dx) + \int_{A^c} |f_n(x) - f(x)| \, d\mu(dx) \\
= \int_X |f_n(x) - f(x)| \, d\mu(dx).
\]
Taking supremums, we get that
\[
\sup_{A \in \mathcal{B}} |P_n(A) - P(A)| \leq \frac{1}{2} \int_X |f_n(x) - f(x)| \mu(dx).
\]

Now, as \(f, f_n\) measurable we have that \(f_n - f\) is as well. Therefore, if \(B := \{ x \in X : f_n - f \geq 0 \} \in \mathcal{B}\), we get that
\[
2 \sup_{A \in \mathcal{B}} |P_n(A) - P(A) \geq |P_n(B) - P(B)|
\]
\[
= | \int_B f_n(x) - f(x) \mu(dx) | + | \int_{B^c} f_n(x) - f(x) \mu(dx) |
\]
\[
= \int_B |f_n(x) - f(x)| \mu(dx) + \int_{B^c} |f_n(x) - f(x)| \mu(dx)
\]
\[
= \int_X |f_n(x) - f(x)| \mu(dx).
\]

Thus, we have proved equality. Now it simply remains to show our convergence result. Now suppose that \(f_n(x) \to f(x) \) \(-\text{a.s.}\). Then we have that \(|f_n – f| \to 0 \) \(-\text{a.s.}\). Hence, \((f_n – f)^+ := \max(f_n – f, 0) \to 0 \) \(-\text{a.s.}\). Using the fact that for any real-valued function \(g\), we have that \(g = g^+ - g^-\) and \(|g| = g^+ + g^-\) then we get that
\[
\int_X (f(x) - f_n(x))^+ dx = \int_X (f(x) - f_n(x))^- dx,
\]
and therefore
\[
\int_X |f(x) - f_n(x)| \mu(dx) = \int_X (f(x) - f_n(x))^+ \mu(dx) + \int_X (f(x) - f_n(x))^- \mu(dx)
\]
\[
= 2 \int_X (f(x) - f_n(x))^+ \mu(dx).
\]

Now by \((f – f_n)^+ \leq f \in L^1\) and \((f – f_n)^+ \to 0 \) \(-\text{a.s.}\) the dominated convergence theorem gives us that
\[
\int_X |f_n(x) - f(x)| \mu(dx) \to 0,
\]
as \(n \to \infty\).

\[\square\]

Inverse distribution function properties. Let \(\mu\) be a measure on the Borel subspace \((A, \mathcal{B}(A))\) of \(\mathbb{R}\). Then \(F(x) := \mu((-\infty, x]\cap A)\) is nondecreasing and right-continuous. Furthermore, \(A_y := \{ x \in A : F(x) \geq y \}\) is closed and \(F^- (y) := \inf_{A_y}\) is such that \(F^- (y) \leq x\) if and only if \(y \leq F(x)\).

Proof: We note that if \(x_0 \leq x\), then \(\mu((-\infty, x_0]\cap A) \leq \mu((-\infty, x]\cap A)\) by monotonicity of \(\mu\). Now let \(x_n \downarrow x\). As \(\bigcap_n (-\infty, x_n] = (-\infty, x]\) then by continuity from above, we have that \(F(x_n) = \mu((-\infty, x_n]\cap A) \downarrow \mu((-\infty, x]\cap A) = F(x)\). Thus \(F\) is right-continuous.

Now, let us take \(x \in \bar{A}_y\). As \(A\) a metric subspace of \(\mathbb{R}\) in the restricted metric \(d : A \times A \to \mathbb{R}_+\) defined by \(d(a, b) = |a – b|\), then we have the existence of a sequence \(x_n \in \bar{A}_y\) such that \(x_n \to x\). Let us choose \(\epsilon > 0\) and note that by right-continuity there exists a \(\delta > 0\) such that \(F(x + \delta) – F(x) < \epsilon\). Furthermore, there exists an \(N\) such that for \(n \geq N\) we have \(|x_n - x| < \delta\). Suppose that \(x_n \leq x\). Then we have that
\[
F(x) + \epsilon \geq F(x) \geq F(x_n) \geq y.
\]

Now suppose that \(x_n \geq x\). By construction, we have \(x_n < x + \delta\), so that \(F(x_n) \leq F(x + \delta)\) and \(F(x) - F(x_n) < \epsilon\). Therefore,
\[
y \leq F(x_n) \leq F(x) + \epsilon.
\]
Hence, \(F(x) + \epsilon \geq y\) for every \(\epsilon > 0\). However, as \(\epsilon\) arbitrary we have that \(F(x) \geq y\) so \(x \in A_y\). Hence \(A_y\) closed.
As A_y closed then we have $F^-(y) = \inf A_y \in A_y$, and so $y \leq F(F^-(y))$. Suppose that $y \leq F(x)$. Thus, $x \in A_y$ and so $F^-(y) \leq x$. There are at least two ways to show the converse. In the first, take $F^-(y) \leq x$. Then we have $y \leq F(F^-(y)) \leq F(x)$ by F nondecreasing.

In the second, we use the right-continuity of F and prove the contrapositive of the converse. Let us assume that $y > F(x)$. By right-continuity, there exists a $\delta > 0$ such that $y > F(x+\delta)$ and so $x+\delta \notin A_y$. This implies that $F^-(y) \geq x + \delta > x$. □

Convergence in probability and equality in distribution. Let us define random variables $X_n, X, Y_n,$ and Y on (Ω, F, P) such that $X_n \overset{p}{\to} X$, $X \overset{d}{=} Y$ and $X_n \overset{d}{=} Y_n$ for all n. Then

$$Y_n \overset{d}{\to} Y.$$

Proof. Let $\epsilon > 0$, then

$$P(X_n \leq x) = P(X_n \leq x, |X_n - X| < \epsilon) + P(X_n \leq x, |X_n - X| \geq \epsilon)$$

$$\leq P(X < x + \epsilon) + P(|X_n - X| \geq \epsilon),$$

thus for every $\epsilon > 0$ we have

$$\limsup_{n \to \infty} P(X_n \leq x) \leq P(X < x + \epsilon).$$

Hence,

$$\limsup_{n \to \infty} P(X_n \leq x) \leq P(X \leq x),$$

and equality in distribution supplies us with

$$\limsup_{n \to \infty} P(Y_n \leq x) \leq P(Y \leq x).$$

Now, we consider a similar inequality. Namely, if we let $\epsilon > 0$ then

$$P(X \leq x - \epsilon) \leq P(X_n \leq x) + P(|X_n - X| \geq \epsilon),$$

which is equivalent to

$$P(X \leq x - \epsilon) + \liminf_{n \to \infty} P(|X_n - X| \geq \epsilon) \leq \liminf_{n \to \infty} P(X_n \leq x),$$

so by applying the equivalence in distributions again we have

$$P(Y \leq x) \leq \liminf_{n \to \infty} P(Y_n \leq x) \leq \limsup_{n \to \infty} P(Y_n \leq x) \leq P(Y \leq x).$$

If x a continuity point of $F(x) = P(Y \leq x)$, then $F(x) - F(x-) = 0$ thus $P(Y < x) = P(Y \leq x)$ and hence $Y_n \overset{d}{\to} Y$ by definition of weak convergence. (Recall, that the system of rays of the form $(-\infty, x]$ are a convergence-determining class on the Borel σ-algebra on \mathbb{R}, and that $(P \circ Y^{-1})(\partial(-\infty, x]) = P(Y \leq x) - P(Y < x)$, corresponding to the more general definition of weak convergence on metric spaces, evinced in [5]). □

Stochastic domination and nonnegative random variables. Let X, Y be nonnegative random variables defined on (Ω, F, P) such that for all $t \geq 0$ we have $P(Y \geq t) \geq P(X \geq t)$. Then if $f : \mathbb{R} \to [0, \infty)$ is a nondecreasing continuously differentiable (i.e. C^1) function such that $f(0) = 0$ we have that $E[f(Y)] \geq E[f(X)]$.

Proof. It is sufficient to show that for any nonnegative random variable X that

$$E[f(X)] = \int_0^\infty f'(t)P(X \geq t) \ dt.$$
To show this, we first see that

\[
E[f(X)] = \int_{\Omega} f(X(\omega)) \, dP
\]

\[
= \int_{\Omega} \int_0^{X(\omega)} f'(t) \, dt \, dP
\]

\[
= \int_{\Omega} \int_0^\infty f'(t) 1_{\{X(\omega) \geq t\}} \, dt \, dP
\]

\[
= \int_0^\infty \int_{\Omega} f'(t) 1_{\{X(\omega) \geq t\}} \, dP \, dt
\]

\[
= \int_0^\infty f'(t) P(X \geq t) \, dt,
\]

and the desired conclusion follows from the monotonicity of the Lebesgue integral. For \(X \) a non-negative integer-valued random variable, this becomes

\[
E[f(X)] = \sum_{n=1}^{\infty} [f(n) - f(n - 1)] P(X \geq n).
\]

References

