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Beyond Normalityl

generalized linear regression model

To handle data with different distribution and different support

o E(Y|X) =g 1(XpB), where g is called link function

e V ~ fy(y|0,7) = h(y,7)exp (b(Q)TC(f(Q)_A(Q)>

— examples include families of normal, Bernoulli, Poisson,
exponential distributions

— We reparameterize the model such that b(6) = 0. If fur-
thermore that T'(y) = y then we can show that E(Y) =
A'(0) and var(Y) = A”(0)d(1)

— Canonical link: X8 = b(60)
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Common choice

Common distributions with typical uses and canonical link functions

o o i . Link function, )
Distribution Support of distribution Typical uses Link name Mean function
XB = glp)
Naormal real: (—oo, +oc) Linear-response data |dentity XB=p u=XA
Exponential Exponential-response data, scale | Negative
real: (0, +o00) g g ' e X8 =—p! u=—(Xg)!
Gamma parameters inverse
Inverse Inverse
real: (0, 400 X8 = 2 — (X g8) 12
Gaussian (o, ) squared B=u p=(X8)
count of occurrences in fixed
Poisson integer: 0,1, 2,... Lo XA =In = exp(X
ger- % 5 4 amount of time/space ? s (#) k p(X8)
outcome of single yes/o
Bemoulli integer: {0,1} gey XA = ln( i )
occurrence 1-p
count of # of "yes" occurrences
Binomial integer: 0,1,..., N Y XB=In "
out of N yes/no occurrences =l
integer: [0, K') exp(X ) 1
g - - outcome of single K-wa Logit H= =
Categorical | Kevector of integer. [0,1], where a Y 1 +exp(X8) 1+exp(—XB)
exactly one element in the vector Occumence y
has the value 1 XA = ln( ,u)
count of occurrences of different
Multinomial | K-vector of integer: [0, N] types (1 .. K) out of N total K-way
OCCUMmences

source: wikipedia.com
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Estimation

e MLE estimation: 8 = argmaxlI(B8) = arg max{>. b(6,)T(Y;) —
A(6;)}

e Newton-Raphson method: B;411 = Bt — (I"(B))~'(B). If b
and 7' are identity mapping, then

onB) _ v alen,

o8 > Xi(Y; — A'(6)))
PUB) _ _xmwx
oJelo)ed ’

where W = diag(w1, ..., wn) = [diag(A"(67), ..., A”(6,))] 1
— Iteratively Reweighted Least Squares
Bir1 = X'WX) 1 X'Wyz,
where z = X3+W-1(Y—-A'(0)), A'(0) = (A(07),...,A'(6n))
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Beyond Normalityl

quantile regression

The method of least squares estimates the conditional mean
of the response variable, while quantile regression estimates the
conditional median (or other quantiles) of the response variable.

e Square distance leads to mean estimation

e Pinball loss, pr(z) = z(7 — I(,.0)) leads to T-th quantile es-
timation
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quantile linear regression

e Q=374 pr(Yi—XB)

e More robust than OLS to non-normal errors and outliers in
y direction)

e Optimization: quadratic majorization or gradient descent

Quantile Regression in the Heteroscedastic Error Model
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Beyond Linearityl

Local regression

Adaptive to local smoothness via weighting

e F(Y)= f(X) and we estimate f locally
e f(X;) is estimated by

— Weighted Least Squared estimator with (X, Y;) associated
with weights w(X;, X},).

— w IS larger is X; and X, is closer. Local data play more
important role of estimation

— Choices of weight function w: Gaussian exp{—||X;—X||?/c2},
uniform I(||X; — X|| <b), triangle function, or k-NN
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Local regression

e Choice of Bandwidth can be important (trade-off between
smoothness and biasness)

e Biased estimation, especially when f”(z) is large

e Consistent estimation, as local data density goes to infinity
and bandwidth goes to zero.

e Locally 0-order (kernel smoother) or high-order (local poly-
nomial regression) extension.
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Local regression

tau=10 tau=1

0.5

tau=0.01

0.5

source: https://medium.com/100-days-of-algorithms/day-97-locally-
weighted-regression-c9cfaffO87fb



Beyond Linearityl

Sieve/Spline regression

Km

e Sieve expansion: fmy(x) = ijl

f*

zim(x)Bjm approximates true

® Zim IS pre-designed nonlinear basis function.
e A larger K,, (hopefully) leads to a better approximation
e Example: polynomial basis, wavelet basis and spline basis

e Estimation follows MLR
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Spline regression

e Spline function: piece-wise polynomial functions with smooth
connection

e B-spline or basis spline. Any spline function of given degree
can be expressed as a linear combination of B-splines of that
degree, under same knots setting.
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Spline regression

e Choice of degree (usually 3)
e Choice of knots (usually uniform grid)
e Smoothing spline: minimizing X%, (Y;—f(X;))2+\ JE(f(x))?dx

e [ he solution to this minimization problem is a cubic spline
with knots set being the X;'s.

e )\ controls the smoothness level
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Kernel Ridge regression

e Mapping all X; to feature space (¢1(X;),...,0(X;),...) =
¢(X;)

e Linear regression on feature space, or view ¢;'s as (infinite)
basis functions

e Denote d be the n x oo dimension design matrix, we consider
ridge regression

o 3=(PTDd+ AN)P'Y = dl'(dd! 4+ A\I))Y
o Fitted value ¢(X;)ToT (PP 4+ AI,)Y
e Kernel < ¢(X;), ¢(X;) >= K(X;, X;)

e Requires inverting n by n matrix
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Choice

Target ()

Target ()

Source;:

of kernel and A\
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0.0

Gaussian Kernel with sigma = 0.01

lambda = 1
@ |ambda = 0.1
@ |ambda = 0.01
@ [ambda = 0.001
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Gaussian Kernel with sigma =10

lambda = 1
@ |ambda = 0.1
@ |ambda = 0.01
@ [ambda = 0.001
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Target ()

Target ()
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Gaussian Kernel with sigma =1

lambda = 1
@ |ambda = 0.1
@ |ambda = 0.01
@ [ambda = 0.001

0 20 40 60 80 100

Gaussian Kernel with sigma =100

lambda = 1
@ |ambda = 0.1
@ |ambda = 0.01
@ [ambda = 0.001
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https://rpubs.com/Saulabrm /210788
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Beyond Linearityl

Gaussian Process

e View function f as a random process (GP)

e For any vector (Xq,...,Xn), (f(X1),...,f(Xy)) follows mul-
tivariate normal with covariance matrix k(X;, X;).

o YV; = f(X;) + N(0,52)

e What is the joint distribution of Y7,..., Y, Y}, or Yy, ..., Yo, f(X}),7
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e Conditional distribution of multivariate normal (source: wikipedia)

Conditional distributions |[=dit]

If M-dimensional X is partitioned as follows

1
X = [2;} with sizes [(Nq_);] y 1:|

and accordingly g and I are partitioned as follows
by ] . : qx1
= with sizes |i _ :|
L‘-‘z (N—gq)x1
220 X q*x4q EIX{N_QJ
2o X (N—q)xq (N—gq})x(N—q)

then the distribution of x, conditional on X, = a is multivariate normal (x, | X, = a) ~ N{j_.i: f} where

¥} = [ l with sizes |

=gy + BBy, (a— )

and covariance matrix

=3 - Eng_zlzm 1201

e Estimate (predicted) f(X;) or Y} by the conditional distribu-
tion.

e Bayesian interval inference
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Example

Gaussian process regression on a noisy dataset

----- fix) = xsin(x)

10.0 A Mean prediction
95% confidence interval
7.5 1 & Observations I
o K
5.0

2.5 - + 4
0.04 T {’

-2.5 1 +

_?.5 -

fix)

source: https://scikit-learn.org
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Beyond Linearityl

Tree Model and Random Forest

Constant prediction over a rectangle region of the predictors

Roct Node

Unde_rstomding the risks to
prevent a heart attack.

Ve
Leaf Nodes

Source: https://www.datacamp.com/tutorial/decision-tree-classificatic
python
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Constructing Trees

e Piecewise constant regression function

e Basically partition the X space into rectangles

e Predicted value is mean of responses in rectangle

e Minimize SSE via greedy search (sequentially partitioning)

e Trade off between minimizing SSE and complexity; proper
stopping rule (e.g., never yield a node that contains less than
2% of the data)

e (Generalize to non-rectangle split
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'Random Forest|

trees that are grown very deep tend to learn highly irregular
patterns. Overfitting occurs

e Average result of many many small trees.
e Each tree is based on a subset of data set; reduce variance

e Each tree is based on a subset of predictors; reduce tree-to-
tree correlation

Random Forest Simplified

Instance

-

Random Forest I A N
— |

e '

c(°< a>j\q
66000{“?)\‘ obdboboo 6bdd dddd

Tree-1 Tree-2 Tree-n

Class-A Class-B Class-B
[ Majority-Voting |

Final-Class

Source: Wikipedia
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Beyond Linearityl

Neural Network

e Combination of affine mapping and nonlinear elementwise
mapping

y=Bjoocj0Bro0s...Bpox

e Choice of affine mapping: fully connected layer, CNN layer

e Choice of nonlinear mapping: activation function, Batch nor-
malization

e Other special structure: skip connection, Recurrent neural
networks

DNN is not only for regression or classification. Generative
model, unsupervised learning, “longitudinal’” data
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Deep learning and A.lL

e Surprising performance due to explosion of the scale of struc-
ture, and massive of training data

e How to use non-supervised data

e How to use pre-trained model

e How to improve adversarial robustness
e How to improve fairness

e How to introduce inference such as C.I. or hypothesis testing?
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Neural Network

e Universality of approximation power
Relu networks means all piecewise linear functions.

e (Stochastic) Gradient Descent Chain rule and Back propa-
gation algorithm (GPU computing)

e Non-convex optimization problem, non-unique solution
e Required experienced research to train a good DNN

e Other special structure: skip connection, Recurrent neural
networks
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Sparse Modell

High dimensional regression E(Y) = X8 where B8 € RP and p > n

e X!I'X is not invertible, and columns of X is always linear
dependent

e OLS estimation is not unique, with SSE = 0.

e People are willing to believe that there exist a “sparse truth’,
i.e., most entries of true g* is almost zero

e Restricted estimation: finding a best sparse g that minimizes
the SSE
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LASSO

e LASSO (least absolute shrinkage and selection operator):

b = argmin |[Y — Xb||, subject to ) |b;] <t

e Equivalent estimation:

b=argmin|Y — Xb|| + X)) |b

e a sequence of models, from null to full, as t increases (or A
decrease)

e How to choose \7

e One can pick one among them, depending on some criterion
(e.g. testing accuracy).
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The non-smoothness of absolute function introduces sparsity in
the solution.
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Source: glmnet package in R.

The penalty can be generalized to any modeling.
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'Model Complexity and Generalization bound|

e Candidates family of functions F, and loss function L

e Optimization problem:
1 n
Remp(f) = - > Ly, f(24))
i=1
f=argminR
f ng]: emp(f)
e Generalization error: the discrepancy between training accu-
racy and testing accuracy.

If all f € F are bounded functions, then

R(f) < Remp(F) + V 09171+ T00(2/%)

with probability 1 —§, where R(f) = EL(y, f(x))
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Balance between model complexity and fitting perfori

underfitting
zone

overfitting
zZone

generalization
error

hias e, variance

P capacity
optimal capacity

source: https://djsaunde.wordpress.com/2017/07/17 /the-bias-
variance-tradeoff/

9-27



Explainl

Bias: f*¢ F, or mingcr R(f) > min; R(f)

Jis incapable to model the true function

Variance: the estimation is too difficult, hard to search a

overly large space

The theorem can be generalized to other complexity measure

(e.g. V.C dimension, Rademacher complexity)

The theorem only gives an upper bound, fails to explain

model DNN behavior.
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