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Beyond Normality

generalized linear regression model

To handle data with different distribution and different support

• E(Y |X) = g−1(Xβ), where g is called link function

• Y ∼ fY (y | θ, τ) = h(y, τ) exp
(
b(θ)T (y)−A(θ)

d(τ)

)
– examples include families of normal, Bernoulli, Poisson,

exponential distributions

– We reparameterize the model such that b(θ) = θ. If fur-

thermore that T (y) = y then we can show that E(Y ) =

A′(θ) and var(Y ) = A′′(θ)d(τ)

– Canonical link: Xβ = b(θ)
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Common choice

source: wikipedia.com
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Estimation

• MLE estimation: β = argmax l(β) = argmax{
∑

b(θi)T (Yi) −
A(θi)}

• Newton-Raphson method: βt+1 = βt − (l′′(β))−1l′(β). If b

and T are identity mapping, then

–

∂l(β)

∂β
=

∑
X ′

i(Yi −A′(θi))

–

∂2l(β)

∂β∂β′ = −X′WX,

where W = diag(w1, . . . , wn) = [diag(A′′(θ1), . . . , A′′(θn))]−1

– Iteratively Reweighted Least Squares

βt+1 = (X′WX)−1X′Wz,

where z = Xβt+W−1(Y−A′(θ)), A′(θ) = (A′(θ1), . . . , A′(θn))′
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Beyond Normality

quantile regression

The method of least squares estimates the conditional mean
of the response variable, while quantile regression estimates the
conditional median (or other quantiles) of the response variable.

• Square distance leads to mean estimation

• Pinball loss, ρτ(x) = x(τ − I(x<0)) leads to τ-th quantile es-
timation
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quantile linear regression

• Q =
∑n

i=1 ρτ(Yi −Xβ)

• More robust than OLS to non-normal errors and outliers in
y direction)

• Optimization: quadratic majorization or gradient descent

Quantile Regression in the Heteroscedastic Error Model
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Beyond Linearity

Local regression

Adaptive to local smoothness via weighting

• E(Y ) = f(X) and we estimate f locally

• f(Xh) is estimated by

– Weighted Least Squared estimator with (Xi, Yi) associated

with weights w(Xi, Xh).

– w is larger is Xi and Xh is closer. Local data play more

important role of estimation

– Choices of weight function w: Gaussian exp{−∥Xi−Xh∥2/σ2},
uniform I(∥Xi −Xh∥ ≤ b), triangle function, or k-NN
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Local regression

• Choice of Bandwidth can be important (trade-off between

smoothness and biasness)

• Biased estimation, especially when f ′′(x) is large

• Consistent estimation, as local data density goes to infinity

and bandwidth goes to zero.

• Locally 0-order (kernel smoother) or high-order (local poly-

nomial regression) extension.
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Local regression

source: https://medium.com/100-days-of-algorithms/day-97-locally-
weighted-regression-c9cfaff087fb
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Beyond Linearity

Sieve/Spline regression

• Sieve expansion: fm(x) =
∑Km

j=1 zjm(x)βjm approximates true

f∗

• zjm is pre-designed nonlinear basis function.

• A larger Km (hopefully) leads to a better approximation

• Example: polynomial basis, wavelet basis and spline basis

• Estimation follows MLR
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Spline regression

• Spline function: piece-wise polynomial functions with smooth

connection

• B-spline or basis spline. Any spline function of given degree

can be expressed as a linear combination of B-splines of that

degree, under same knots setting.
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Spline regression

• Choice of degree (usually 3)

• Choice of knots (usually uniform grid)

• Smoothing spline: minimizing
∑n

i=1(Yi−f(Xi))
2+λ

∫ 2
0 (f

′′(x))2dx

• The solution to this minimization problem is a cubic spline

with knots set being the Xi’s.

• λ controls the smoothness level
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Kernel Ridge regression

• Mapping all Xi to feature space (ϕ1(Xi), . . . , ϕk(Xi), . . .) =

ϕ(Xi)

• Linear regression on feature space, or view ϕi’s as (infinite)

basis functions

• Denote Φ be the n×∞ dimension design matrix, we consider

ridge regression

• β = (ΦTΦ+ λI∞)ΦTY = ΦT (ΦΦT + λIn)Y

• Fitted value ϕ(Xh)
TΦT (ΦΦT + λIn)Y

• Kernel < ϕ(Xi), ϕ(Xj) >= K(Xi, Xj)

• Requires inverting n by n matrix
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Choice of kernel and λ

Source: https://rpubs.com/Saulabrm/210788
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Beyond Linearity

Gaussian Process

• View function f as a random process (GP)

• For any vector (X1, . . . , Xn), (f(X1), . . . , f(Xn)) follows mul-

tivariate normal with covariance matrix k(Xi, Xj).

• Yi = f(Xi) +N(0, σ2)

• What is the joint distribution of Y1, . . . , Yn, Yh, or Y1, . . . , Yn, f(Xh),?
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• Conditional distribution of multivariate normal (source: wikipedia)

• Estimate (predicted) f(Xh) or Yh by the conditional distribu-

tion.

• Bayesian interval inference
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Example

source: https://scikit-learn.org
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Beyond Linearity

Tree Model and Random Forest

Constant prediction over a rectangle region of the predictors

Source: https://www.datacamp.com/tutorial/decision-tree-classification-

python
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Constructing Trees

• Piecewise constant regression function

• Basically partition the X space into rectangles

• Predicted value is mean of responses in rectangle

• Minimize SSE via greedy search (sequentially partitioning)

• Trade off between minimizing SSE and complexity; proper

stopping rule (e.g., never yield a node that contains less than

2% of the data)

• Generalize to non-rectangle split
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Random Forest

trees that are grown very deep tend to learn highly irregular
patterns. Overfitting occurs

• Average result of many many small trees.

• Each tree is based on a subset of data set; reduce variance

• Each tree is based on a subset of predictors; reduce tree-to-
tree correlation

Source: Wikipedia
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Beyond Linearity

Neural Network

• Combination of affine mapping and nonlinear elementwise

mapping

y = B1 ◦ σ1 ◦B2 ◦ σ2 . . . Bm ◦ x

• Choice of affine mapping: fully connected layer, CNN layer

• Choice of nonlinear mapping: activation function, Batch nor-

malization

• Other special structure: skip connection, Recurrent neural

networks

DNN is not only for regression or classification. Generative

model, unsupervised learning, “longitudinal” data
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Deep learning and A.I.

• Surprising performance due to explosion of the scale of struc-

ture, and massive of training data

• How to use non-supervised data

• How to use pre-trained model

• How to improve adversarial robustness

• How to improve fairness

• How to introduce inference such as C.I. or hypothesis testing?
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Neural Network

• Universality of approximation power

Relu networks means all piecewise linear functions.

• (Stochastic) Gradient Descent Chain rule and Back propa-

gation algorithm (GPU computing)

• Non-convex optimization problem, non-unique solution

• Required experienced research to train a good DNN

• Other special structure: skip connection, Recurrent neural

networks
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Sparse Model

High dimensional regression E(Y ) = Xβ where β ∈ Rp and p ≫ n

• XTX is not invertible, and columns of X is always linear

dependent

• OLS estimation is not unique, with SSE = 0.

• People are willing to believe that there exist a “sparse truth”,

i.e., most entries of true β∗ is almost zero

• Restricted estimation: finding a best sparse β that minimizes

the SSE
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LASSO

• LASSO (least absolute shrinkage and selection operator):

b = argmin ∥Y −Xb∥, subject to
∑

|bi| ≤ t

• Equivalent estimation:

b = argmin ∥Y −Xb∥+ λ
∑

|bi|

• a sequence of models, from null to full, as t increases (or λ

decrease)

• How to choose λ?

• One can pick one among them, depending on some criterion

(e.g. testing accuracy).
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The non-smoothness of absolute function introduces sparsity in

the solution.

Source: glmnet package in R.

The penalty can be generalized to any modeling.
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Model Complexity and Generalization bound

• Candidates family of functions F, and loss function L

• Optimization problem:

Remp(f) =
1

n

n∑
i=1

L(yi, f(xi))

f̂ = argmin
f∈F

Remp(f)

• Generalization error: the discrepancy between training accu-

racy and testing accuracy.

If all f ∈ F are bounded functions, then

R(f̂) ≤ Remp(f̂) +

√
log |F|+ log(2/δ)

2n

with probability 1− δ, where R(f) = EL(y, f(x))
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Balance between model complexity and fitting performance

source: https://djsaunde.wordpress.com/2017/07/17/the-bias-

variance-tradeoff/
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Explain

• Bias: f∗ /∈ F, or minf∈F R(f) > minf R(f)

F is incapable to model the true function

• Variance: the estimation is too difficult, hard to search a

overly large space

• The theorem can be generalized to other complexity measure

(e.g. V.C dimension, Rademacher complexity)

• The theorem only gives an upper bound, fails to explain

model DNN behavior.
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