Purdue-NCKU program

Lecture 9
 Advanced Regression Technique

Dr. Qifan Song

Beyond Normality

generalized linear regression model

To handle data with different distribution and different support

- $E(Y \mid X)=g^{-1}(X \beta)$, where g is called link function
- $Y \sim f_{Y}(y \mid \theta, \tau)=h(y, \tau) \exp \left(\frac{b(\theta) T(y)-A(\theta)}{d(\tau)}\right)$
- examples include families of normal, Bernoulli, Poisson, exponential distributions
- We reparameterize the model such that $b(\theta)=\theta$. If furthermore that $T(y)=y$ then we can show that $E(Y)=$ $A^{\prime}(\theta)$ and $\operatorname{var}(Y)=A^{\prime \prime}(\theta) d(\tau)$
- Canonical link: $X \beta=b(\theta)$

Common choice

Common distributions with typical uses and canonical link functions

ommon distributions with typical uses and canonical link functions					
Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X} \boldsymbol{\beta}=g(\mu)$	Mean function
Normal	real: $(-\infty,+\infty)$	Linear-response data	Identity	$\mathbf{X} \boldsymbol{\beta}=\mu$	$\mu=\mathbf{X} \boldsymbol{\beta}$
Exponential	real: $(0,+\infty)$	Exponential-response data, scale parameters	Negative inverse	$\mathbf{X} \boldsymbol{\beta}=-\mu^{-1}$	$\mu=-(\mathbf{X} \boldsymbol{\beta})^{-1}$
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X} \boldsymbol{\beta}=\mu^{-2}$	$\mu=(\mathbf{X} \boldsymbol{\beta})^{-1 / 2}$
Poisson	integer: $0,1,2, \ldots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X} \boldsymbol{\beta}=\ln (\mu)$	$\mu=\exp (\mathbf{X} \boldsymbol{\beta})$
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence	Logit	$\mathbf{X} \boldsymbol{\beta}=\ln \left(\frac{\mu}{1-\mu}\right)$	$\mu=\frac{\exp (\mathbf{X} \boldsymbol{\beta})}{1+\exp (\mathbf{X} \boldsymbol{\beta})}=\frac{1}{1+\exp (-\mathbf{X} \boldsymbol{\beta})}$
Binomial	integer: $0,1, \ldots, N$	count of \# of "yes" occurrences out of N yes/no occurrences		$\mathbf{X} \boldsymbol{\beta}=\ln \left(\frac{\mu}{n-\mu}\right)$	
	integer: $[0, K)$	outcome of single K-way occurrence		$\mathbf{X} \boldsymbol{\beta}=\ln \left(\frac{\mu}{1-\mu}\right)$	
Categorical	K -vector of integer: $[0,1]$, where exactly one element in the vector has the value 1				
Multinomial	K-vector of integer: $[0, N]$	count of occurrences of different types (1 .. K) out of N total K-way occurrences			

source: wikipedia.com

Estimation

- MLE estimation: $\beta=\arg \max l(\beta)=\arg \max \left\{\sum b\left(\theta_{i}\right) T\left(Y_{i}\right)-\right.$ $\left.A\left(\theta_{i}\right)\right\}$
- Newton-Raphson method: $\beta_{t+1}=\beta_{t}-\left(l^{\prime \prime}(\beta)\right)^{-1} l^{\prime}(\beta)$. If b and T are identity mapping, then

$$
\frac{\partial l(\beta)}{\partial \beta}=\sum X_{i}^{\prime}\left(Y_{i}-A^{\prime}\left(\theta_{i}\right)\right)
$$

-

$$
\frac{\partial^{2} l(\beta)}{\partial \beta \partial \beta^{\prime}}=-\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}
$$

where $\mathbf{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)=\left[\operatorname{diag}\left(A^{\prime \prime}\left(\theta_{1}\right), \ldots, A^{\prime \prime}\left(\theta_{n}\right)\right)\right]^{-1}$

- Iteratively Reweighted Least Squares

$$
\beta_{t+1}=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \mathbf{z}
$$

where $\mathbf{z}=\mathbf{X} \beta_{t}+\mathbf{W}^{-1}\left(\mathbf{Y}-\mathbf{A}^{\prime}(\theta)\right), \mathbf{A}^{\prime}(\theta)=\left(A^{\prime}\left(\theta_{1}\right), \ldots, A^{\prime}\left(\theta_{n}\right)\right)^{\prime}$

Beyond Normality

quantile regression

The method of least squares estimates the conditional mean of the response variable, while quantile regression estimates the conditional median (or other quantiles) of the response variable.

- Square distance leads to mean estimation
- Pinball loss, $\rho_{\tau}(x)=x\left(\tau-I_{(x<0)}\right)$ leads to τ-th quantile estimation

quantile linear regression

- $Q=\sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-X \beta\right)$
- More robust than OLS to non-normal errors and outliers in y direction)
- Optimization: quadratic majorization or gradient descent

Quantile Regression in the Heteroscedastic Error Model

Beyond Linearity

Local regression

Adaptive to local smoothness via weighting

- $E(Y)=f(X)$ and we estimate f locally
- $f\left(X_{h}\right)$ is estimated by
- Weighted Least Squared estimator with (X_{i}, Y_{i}) associated with weights $w\left(X_{i}, X_{h}\right)$.
- w is larger is X_{i} and X_{h} is closer. Local data play more important role of estimation
- Choices of weight function w : Gaussian $\exp \left\{-\left\|X_{i}-X_{h}\right\|^{2} / \sigma^{2}\right\}$, uniform $I\left(\left\|X_{i}-X_{h}\right\| \leq b\right)$, triangle function, or k-NN

Local regression

- Choice of Bandwidth can be important (trade-off between smoothness and biasness)
- Biased estimation, especially when $f^{\prime \prime}(x)$ is large
- Consistent estimation, as local data density goes to infinity and bandwidth goes to zero.
- Locally 0-order (kernel smoother) or high-order (local polynomial regression) extension.

Local regression

source: https://medium.com/100-days-of-algorithms/day-97-locally-weighted-regression-c9cfaff087fb

Beyond Linearity

Sieve/Spline regression

- Sieve expansion: $f_{m}(x)=\sum_{j=1}^{K_{m}} z_{j m}(x) \beta_{j m}$ approximates true f^{*}
- $z_{j m}$ is pre-designed nonlinear basis function.
- A larger K_{m} (hopefully) leads to a better approximation
- Example: polynomial basis, wavelet basis and spline basis
- Estimation follows MLR

Spline regression

- Spline function: piece-wise polynomial functions with smooth connection
- B-spline or basis spline. Any spline function of given degree can be expressed as a linear combination of B-splines of that degree, under same knots setting.

Spline regression

- Choice of degree (usually 3)
- Choice of knots (usually uniform grid)
- Smoothing spline: minimizing $\sum_{i=1}^{n}\left(Y_{i}-f\left(X_{i}\right)\right)^{2}+\lambda \int_{0}^{2}\left(f^{\prime \prime}(x)\right)^{2} d x$
- The solution to this minimization problem is a cubic spline with knots set being the X_{i} 's.
- λ controls the smoothness level

Kernel Ridge regression

- Mapping all X_{i} to feature space $\left(\phi_{1}\left(X_{i}\right), \ldots, \phi_{k}\left(X_{i}\right), \ldots\right)=$ $\phi\left(X_{i}\right)$
- Linear regression on feature space, or view ϕ_{i} 's as (infinite) basis functions
- Denote Φ be the $n \times \infty$ dimension design matrix, we consider ridge regression
- $\beta=\left(\Phi^{T} \Phi+\lambda I_{\infty}\right) \Phi^{T} Y=\Phi^{T}\left(\Phi \Phi^{T}+\lambda I_{n}\right) Y$
- Fitted value $\phi\left(X_{h}\right)^{T} \Phi^{T}\left(\Phi \Phi^{T}+\lambda I_{n}\right) Y$
- Kernel $<\phi\left(X_{i}\right), \phi\left(X_{j}\right)>=K\left(X_{i}, X_{j}\right)$
- Requires inverting n by n matrix

Choice of kernel and λ

Source: https://rpubs.com/Saulabrm/210788

Beyond Linearity

Gaussian Process

- View function f as a random process (GP)
- For any vector $\left(X_{1}, \ldots, X_{n}\right),\left(f\left(X_{1}\right), \ldots, f\left(X_{n}\right)\right)$ follows multivariate normal with covariance matrix $k\left(X_{i}, X_{j}\right)$.
- $Y_{i}=f\left(X_{i}\right)+N\left(0, \sigma^{2}\right)$
- What is the joint distribution of $Y_{1}, \ldots, Y_{n}, Y_{h}$, or $Y_{1}, \ldots, Y_{n}, f\left(X_{h}\right)$, ?
- Conditional distribution of multivariate normal (source: wikipedia)

Conditional distributions [edit]

If N -dimensional \mathbf{x} is partitioned as follows

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right] \text { with sizes }\left[\begin{array}{c}
q \times 1 \\
(N-q) \times 1
\end{array}\right]
$$

and accordingly $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are partitioned as follows

$$
\begin{aligned}
\boldsymbol{\mu} & =\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \text { with sizes }\left[\begin{array}{c}
q \times 1 \\
(N-q) \times 1
\end{array}\right] \\
\boldsymbol{\Sigma} & =\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] \text { with sizes }\left[\begin{array}{cc}
q \times q & q \times(N-q) \\
(N-q) \times q & (N-q) \times(N-q)
\end{array}\right]
\end{aligned}
$$

then the distribution of \mathbf{x}_{1} conditional on $\mathbf{x}_{2}=\mathbf{a}$ is multivariate normal $\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}=\mathbf{a}\right) \sim N(\bar{\mu}, \overline{\boldsymbol{\Sigma}})$ where

$$
\overline{\boldsymbol{\mu}}=\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{a}-\boldsymbol{\mu}_{2}\right)
$$

and covariance matrix

$$
\overline{\boldsymbol{\Sigma}}=\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}
$$

- Estimate (predicted) $f\left(X_{h}\right)$ or Y_{h} by the conditional distribution.
- Bayesian interval inference

Example

Gaussian process regression on a noisy dataset

source: https://scikit-learn.org

Beyond Linearity

Tree Model and Random Forest

Constant prediction over a rectangle region of the predictors

Source: https://www.datacamp.com/tutorial/decision-tree-classificatic python

Constructing Trees

- Piecewise constant regression function
- Basically partition the X space into rectangles
- Predicted value is mean of responses in rectangle
- Minimize SSE via greedy search (sequentially partitioning)
- Trade off between minimizing SSE and complexity; proper stopping rule (e.g., never yield a node that contains less than 2% of the data)
- Generalize to non-rectangle split

Random Forest

trees that are grown very deep tend to learn highly irregular patterns. Overfitting occurs

- Average result of many many small trees.
- Each tree is based on a subset of data set; reduce variance
- Each tree is based on a subset of predictors; reduce tree-totree correlation

Random Forest Simplified

Source: Wikipedia

Beyond Linearity

Neural Network

- Combination of affine mapping and nonlinear elementwise mapping

$$
y=B_{1} \circ \sigma_{1} \circ B_{2} \circ \sigma_{2} \ldots B_{m} \circ x
$$

- Choice of affine mapping: fully connected layer, CNN layer
- Choice of nonlinear mapping: activation function, Batch normalization
- Other special structure: skip connection, Recurrent neural networks

DNN is not only for regression or classification. Generative model, unsupervised learning, "longitudinal" data

Deep learning and A.I.

- Surprising performance due to explosion of the scale of structure, and massive of training data
- How to use non-supervised data
- How to use pre-trained model
- How to improve adversarial robustness
- How to improve fairness
- How to introduce inference such as C.I. or hypothesis testing?

Neural Network

- Universality of approximation power

Relu networks means all piecewise linear functions.

- (Stochastic) Gradient Descent Chain rule and Back propagation algorithm (GPU computing)
- Non-convex optimization problem, non-unique solution
- Required experienced research to train a good DNN
- Other special structure: skip connection, Recurrent neural networks

Sparse Model

High dimensional regression $E(Y)=X \beta$ where $\beta \in R^{p}$ and $p \gg n$

- $\mathbf{X}^{T} \mathbf{X}$ is not invertible, and columns of \mathbf{X} is always linear dependent
- OLS estimation is not unique, with SSE $=0$.
- People are willing to believe that there exist a "sparse truth", i.e., most entries of true β^{*} is almost zero
- Restricted estimation: finding a best sparse β that minimizes the SSE

LASSO

- LASSO (least absolute shrinkage and selection operator):

$$
\mathbf{b}=\arg \min \|\mathbf{Y}-\mathbf{X b}\|, \text { subject to } \sum\left|b_{i}\right| \leq t
$$

- Equivalent estimation:

$$
\mathbf{b}=\arg \min \|\mathbf{Y}-\mathbf{X b}\|+\lambda \sum\left|b_{i}\right|
$$

- a sequence of models, from null to full, as t increases (or λ decrease)
- How to choose λ ?
- One can pick one among them, depending on some criterion (e.g. testing accuracy).

The non-smoothness of absolute function introduces sparsity in the solution.

Source: glmnet package in R .

The penalty can be generalized to any modeling.

Model Complexity and Generalization bound

- Candidates family of functions \mathcal{F}, and loss function L
- Optimization problem:

$$
\begin{gathered}
R_{e m p}(f)=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right) \\
\widehat{f}=\arg \min _{f \in \mathcal{F}} R_{e m p}(f)
\end{gathered}
$$

- Generalization error: the discrepancy between training accuracy and testing accuracy.

If all $f \in \mathcal{F}$ are bounded functions, then

$$
R(\hat{f}) \leq R_{e m p}(\hat{f})+\sqrt{\frac{\log |\mathcal{F}|+\log (2 / \delta)}{2 n}}
$$

with probability $1-\delta$, where $R(f)=E L(y, f(x))$

Balance between model complexity and fitting perfor

source: https://djsaunde.wordpress.com/2017/07/17/the-bias-variance-tradeoff/

Explain

- Bias: $f^{*} \notin \mathcal{F}$, or $\min _{f \in \mathcal{F}} R(f)>\min _{f} R(f)$
\mathcal{F} is incapable to model the true function
- Variance: the estimation is too difficult, hard to search a overly large space
- The theorem can be generalized to other complexity measure (e.g. V.C dimension, Rademacher complexity)
- The theorem only gives an upper bound, fails to explain model DNN behavior.

