Purdue-NCKU program

Lecture 8 Multiple Linear Regression

Dr. Qifan Song

The Data and Model

- Still have single response variable \boldsymbol{Y}
- Now have multiple explanatory variables
- Examples:
 - Blood Pressure vs Age, Weight, Diet, Fitness Level
 - Traffic Count vs Time, Location, Population, Month
- Goal: There is a total amount of variation in Y (SSTO). We want to explain as much of this variation as possible using a linear model and our explanatory variables

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

• Have p-1 predictors $\longrightarrow p$ coefficients

General Linear Model

However, it can be much more flexible than just using the original response and explanatory variables in your data set

• Polynomial regression:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

:= $\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$

• cross product term:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i2} * X_{i1} + \varepsilon_{i}$$

:= $\beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \varepsilon_{i}$

• Transformed response:

$$\log(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

• Factor analysis is also a multiple linear regression

Still linear models (of β 's), while the meaning of β is different (will discussed later)

General Linear Regression In Matrix Terms

 After transformation and re-organization, a linear model ("linear" w.r.t. unknown coefficient, not to actual predictors) is obtained

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

• As an array

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1 \ p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2 \ p-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n \ p-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

• In matrix notation

$$Y = X\beta + \varepsilon$$

• Distributional assumptions:

$$\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 I) \longrightarrow \mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I)$$

Estimation, Fitted value and Residuals

- Least squares estimates $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- Fitted values: $\hat{\mathbf{Y}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}$ define a (hyper)plane.
- Residuals: $e = Y \hat{Y} = (I H)Y$
- Expected value E(e) = 0
- Covariance Matrix

$$\sigma^{2}(\mathbf{e}) = \sigma^{2}(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})'$$
$$= \sigma^{2}(\mathbf{I} - \mathbf{H})$$

- $Var(e_i) = \sigma^2(1 h_{ii})$ where $h_{ii} = \mathbf{X}'_i(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i$
- Residuals are usually correlated, i.e., $cov(e_i, e_j) = -\sigma^2 h_{ij}$, $i \neq j$
- Will use this information for diagnose

Estimation of σ^2

- Similar approach as before
- Estimate it from e, since e has nothing to do with β_i 's.
- Now *p* model parameters

$$s^{2} = \frac{e'e}{n-p}$$

=
$$\frac{(Y - Xb)'(Y - Xb)}{n-p}$$

=
$$\frac{SSE}{n-p}$$

$$=$$
 MSE

• Specifically, SSE~ $\sigma^2 \chi^2_{\rm rank}$ of (I–H)

ANOVA TABLE

Source of				
Variation	df	SS	MS	F Value
Regression (Model)	p-1	SSR	MSR=SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE=SSE/(n-p)	
Total	n-1	SSTO		

• F Test: Tests if the predictors *collectively* help explain the variation in Y

$$-H_0: \beta_1 = \beta_2 = \ldots = \beta_{p-1} = 0$$

$$-H_a: \text{ at least one } \beta_k \neq 0, \ 1 \leq k \leq p-1$$

$$-F^* = \frac{SSR/(p-1)}{SSE/(n-p)} \stackrel{H_0}{\sim} F(p-1, n-p)$$

$$- \text{ Reject } H_0 \text{ if } F^* > F(1-\alpha, p-1, n-p)$$

• No conclusions possible regarding individual predictors

Testing Individual Predictor

• Have already shown that $\mathbf{b} \sim N\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X'X})^{-1}\right)$

- This implies
$$b_k \sim N(\beta_k, \sigma^2(b_k))$$

• Perform t test

$$- H_0: \ \beta_k = \beta_k^0 \text{ vs } H_a: \beta_k \neq \beta_k^0$$
$$- t^* = \frac{b_k - \beta_k^0}{s(b_k)} \sim t_{n-p} \text{ under } H_0$$

- P-value =
$$Pr(|t_{n-p}| \ge t^*)$$

- Reject H_0 if $|t^*| > t(1 - \alpha/2, n - p)$ or P-value $< \alpha$

• Confidence interval for β_k

$$-b_k \pm t(1-\alpha/2, n-p)s\{b_k\}$$

Estimation of Mean Response $E(Y_h)$

- interested in making predictions for a new observation, represented by a p dimensional vector \mathbf{X}_h
 - Can show $\widehat{Y}_h \sim N\left(\mathbf{X}'_h \boldsymbol{\beta}, \sigma^2 \mathbf{X}'_h (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}_h\right)$
 - standard error $s\{\hat{Y}_h\} = \sqrt{\mathsf{MSEX}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h}$
- Individual CI for \mathbf{X}_h

$$- \hat{Y}_h \pm t(1-\alpha/2, n-p)s\{\hat{Y}_h\}$$

• Bonferroni CI for g vectors \mathbf{X}_h

$$- \hat{Y}_h \pm t(1-\alpha/(2g), n-p)s\{\hat{Y}_h\}$$

• Working-Hotelling confidence band for the whole regression line

$$- \hat{Y}_h \pm \sqrt{pF(1-\alpha, p, n-p)} s\{\hat{Y}_h\}$$

Predict New Observation

•
$$Y_{h(new)} = E(Y_h) + \varepsilon$$

 $- \hat{Y}_h + \varepsilon \sim N\left(\mathbf{X}'_h \boldsymbol{\beta}, \sigma^2 (1 + \mathbf{X}'_h (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_h)\right)$
 $- s^2(pred) = s^2(\hat{Y}_h) + \mathsf{MSE}$

• Individual CI of $Y_{h(new)}$

$$- \hat{Y}_h \pm t(1-\alpha/2, n-p)s\{pred\}$$

• Bonferroni CI for g vectors \mathbf{X}_h

$$- \hat{Y}_h \pm t(1-lpha/(2g), n-p)s\{pred\}$$

General Linear Test

- Comparison of a <u>full</u> model and <u>reduced</u> model that involves a subset of full model predictors (i.e., hierarchical structure)
- Involves a comparison of unexplained SS
- Consider a full model with k predictors (or k mean parameters) and reduced model with l predictors (l < k)
- One can prove that $SSE(R) SSE(F) \ge 0$.
- Can show that under null hypothesis $F^{\star} = \frac{(SSE(R) - SSE(F))/((n-1-l) - (n-k-1))}{SSE(F)/(n-k-1)} \sim F_{k-l,n-k-1} \text{ distribution}$
- Degrees of freedom for F* are the number of <u>extra</u> variables and the error degrees of freedom for the full model

Example

- Testing the null hypothesis that the regression coefficients for the **extra** variables are all zero.
- H_0 : $\beta_k = 0$ vs H_a : $\beta_k \neq 0$

- Full Model :

$$Y_i = \beta_0 + \sum_{j=1}^{p-1} \beta_j X_{ji} + \varepsilon_i$$

- Reduced Model :

$$Y_{i} = \beta_{0} + \sum_{j=1}^{k-1} \beta_{j} X_{ji} + \sum_{j=k+1}^{p-1} \beta_{j} X_{ji} + \varepsilon_{i}$$

$$-F^{\star} = \frac{(\mathsf{SSE}(\mathsf{R}) - \mathsf{SSE}(\mathsf{F}))/1}{\mathsf{SSE}(\mathsf{F})/(n-p)}$$

- Reject H_0 if $F^* > F(1 - \alpha, 1, n - p)$

• Can show that $F^* = (t^*)^2$, i.e., equivalent to the t test

Extra SS and Notation

- Consider $H_0 : X_1, X_3$ vs $H_a : X_1, X_2, X_3, X_4$
- Null can also be written H_0 : $\beta_2 = \beta_4 = 0$
- Write SSE(F) and SSE(R) as SSE(X₁, X₂, X₃, X₄) and SSE(X₁, X₃) respectively
- Difference in SSE's is the <u>extra SS</u> SSE $(X_2, X_4 | X_1, X_3) = SSE(X_1, X_3) - SSE(X_1, X_2, X_3, X_4)$
- Recall SSM can also be used

 $SSM(X_2, X_4 | X_1, X_3) = SSM(X_1, X_2, X_3, X_4) - SSM(X_1, X_3) \Longrightarrow$ $SSM(X_1, X_2, X_3, X_4) = SSM(X_1, X_3) + SSM(X_2, X_4 | X_1, X_3)$

• Can rewrite F test as

$$F^{\star} = \frac{\mathsf{SSE}(X_2, X_4 | X_1, X_3) / (4 - 2)}{\mathsf{SSE}(X_1, X_2, X_3, X_4) / (n - 5)}$$

• If it is possible that neither H_0 nor H_1 is correct, large p-value doesn't necessary provide evidence for H_0 , but still serves as an evaluation tool for the usefulness of the additional predictors in H_1 .

Type I SS and Type II SS

- Type I and Type II are very different
 - Type I is sequential, so it depends on model statement

 Type II is conditional on all others, so it does not depend on model statement

• For example, model y = x1 x2 x3 yields

Туре І	Туре II
$SSM(X_1)$	$SSM(X_1 X_2,X_3)$
$SSM(X_2 X_1)$	$SSM(X_2 X_1,X_3)$
$SSM(X_3 X_1,X_2)$	$SSM(X_3 X_1,X_2)$

 Could variables be explaining same SS and "canceling" each other out, such that we need to cautions about testing results? • A case study

	Analysis of Variance								
			Su	m of		Mean			
Source		DF	Squ	ares	S	Square	F	Value	Pr > F
Model		3	396.9	8461	132.	32820		21.52	<.0001
Error		16	98.4	0489	6.	15031			
Corrected	Total	19	495.3	8950					
Parameter Estimates									
		Para	meter						
Variable	DF	Est	imate	Pr >	t	Туре	I SS	5 Туре	II SS
Intercept	1	117.	08469	0.2	2578	8156.7	6050) 8.	.46816
skinfold	1	4.	33409	0.1	699	352.2	6980) 12	.70489
thigh	1	-2.	85685	0.2	2849	33.1	6891	7	.52928
midarm	1	-2.	18606	0.1	896	11.5	4590) 11	.54590

- Set of three variables helpful in predicting body fat (P < 0.0001)
- None of the individual parameters is significant
 - Addition of each predictor to a model containing the other two is not helpful
 - More than 90% of Type I SS of skinfold can also be explained by thigh and midarm

Multicollinearity

- Numerical analysis problem is that the matrix $\mathbf{X}'\mathbf{X}$ is almost singular (linear dependent columns)
 - Makes it difficult to take the inverse
 - Generally handled with current algorithms
- Statistical problem: too much correlation among predictors
 - The coefficient estimation lacks interpretability.
 - Difficult to determine regression coefficients \longrightarrow Increased standard error
 - May not affect prediction accuracy if the testing samples follow similar multicollinear correlation.
- Want to refine model to remove redundancy in the predictors

• Investigate the model via general linear tests: fat=skinfold

Analysis of Variance									
		S	um of		Mean				
	DF	Squ	uares	Sc	luare	F	Value	Pr > F	
	1	352.2	26980	352.2	6980		44.30	<.0001	
	18	143.3	11970	7.9	5109				
Total	19	495.3	38950						
Parameter Estimates									
	Param	eter	Stan	dard					
DF	Estim	ate	Er	ror t	; Value	;	Pr >	t	
1	-1.49	610	3.31	923	-0.45)	0.	6576	
1	0.85	719	0.12	878	6.66	5	<.	0001	
	Total DF 1 1	Ana DF 1 18 Total 19 Pa Param DF Estim 1 -1.49 1 0.85	Analysis St DF Squ 1 352.2 18 143.3 Total 19 495.3 Parameter DF Estimate 1 -1.49610 1 0.85719	Analysis of Va Sum of DF Squares 1 352.26980 18 143.11970 Total 19 495.38950 Parameter Est Parameter Stan DF Estimate Er: 1 -1.49610 3.31 1 0.85719 0.12	Analysis of Variance Sum of DF Squares So 1 352.26980 352.2 18 143.11970 7.9 Total 19 495.38950 Parameter Estimates Parameter Standard DF Estimate Error t 1 -1.49610 3.31923 1 0.85719 0.12878	Analysis of Variance Sum of Mean DF Squares Square 1 352.26980 352.26980 18 143.11970 7.95109 Total 19 495.38950 Parameter Estimates Parameter Standard DF Estimate Error t Value 1 -1.49610 3.31923 -0.45 1 0.85719 0.12878 6.66	Analysis of Variance Sum of Mean DF Squares Square F 1 352.26980 352.26980 18 143.11970 7.95109 Total 19 495.38950 Parameter Estimates Parameter Standard DF Estimate Error t Value 1 -1.49610 3.31923 -0.45 1 0.85719 0.12878 6.66	Analysis of Variance Sum of Mean DF Squares Square F Value 1 352.26980 352.26980 44.30 18 143.11970 7.95109 Total 19 495.38950 Parameter Estimates Parameter Standard DF Estimate Error t Value Pr > 1 -1.49610 3.31923 -0.45 0. 1 0.85719 0.12878 6.66 <.	

• Skinfold now helpful. Note the change in coefficient estimate and standard error compared to the full model.

Residuals for Diagnostics

•
$$e = Y - \hat{Y} = (I - H)Y$$

– $\mathbf{I}-\mathbf{H}$ symmetric and idempotent

- Expected value E(e) = 0
- Covariance matrix

$$\sigma^{2}(\mathbf{e}) = \sigma^{2}(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})'$$
$$= \sigma^{2}(\mathbf{I} - \mathbf{H})$$

- $Var(e_i) = \sigma^2 \cdot (1 - h_{ii})$ where $h_{ii} = \mathbf{X}'_i (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}_i$

$$- Cov(e_i, e_j) = \sigma^2 \cdot (0 - h_{ij}) = -\sigma^2 h_{ij}$$

• Estimated variance and covariance

$$-\widehat{Var}(e_i) = MSE \cdot (1 - h_{ii})$$
$$-\widehat{Cov}(e_i, e_i) = -MSE \cdot h_{ii}$$

Residuals

• Ordinary residual

$$e_i = Y_i - \hat{Y}_i \rightarrow \mathbf{e} \sim \mathsf{MVN}(\mathbf{0}, (\mathbf{I} - \mathbf{H})\sigma^2)$$

- residuals do not have the same variance, but depend on \mathbf{X}_{i}
- Semi-studentized residual

$$r_i = \frac{e_i}{\sqrt{\mathsf{MSE}}}$$

– denominator is not an estimate of SD of e_i

• (Internally) Studentized Residual

$$r_i = \frac{e_i}{\sqrt{\mathsf{MSE}(1-h_{ii})}}$$

– denominator is the estimate of SD of e_i

- "Studentized" residual doesn't follow the student t distribution (but a τ distribution)
- Outlier may not have a outstanding studentized residual

Deleted Residual

• Deleted residual (a refinement of residual)

$$d_i = Y_i - \widehat{Y}_{i(i)} = \frac{e_i}{1 - h_{ii}}$$

- (\mathbf{X}_i, Y_i) was not used to fit the model
- can calculate d_i in a single model fit
- Standard deviation of deleted residuals

$$s^{2}\{d_{i}\} = MSE_{(i)} \cdot (1 + \mathbf{X}'_{i}(\mathbf{X}'_{(i)}\mathbf{X}_{(i)})^{-1}\mathbf{X}_{i})$$
$$= \frac{MSE_{(i)}}{1 - h_{ii}}$$

• Studentized deleted residual (externally studentized residual)

$$t_i = \frac{d_i}{s\{d_i\}} = \frac{e_i}{1 - h_{ii}} \cdot \sqrt{\frac{1 - h_{ii}}{MSE_{(i)}}}$$
$$= \frac{e_i}{\sqrt{MSE_{(i)}(1 - h_{ii})}}$$

Studentized Deleted Residuals

- If there is only one outlier, its studentized deleted residual will be outstanding
- Useful for identifying outlying Y observation

- Test H_{i0} : $E[Y_i] = X_i\beta$ vs H_{ia} : $E[Y_i] \neq X_i\beta$

• If there are no outlying observations,

$$t_i \sim t_{n-1-p}$$

- can compare t_i to this reference distribution
- adjust for n tests using Bonferroni
- an outlier has $|t_i| > t_{1-\alpha/(2n)}(n-1-p)$
- $-t_i$ are not independent

Identifying Outlying X: Hat Matrix Diagonals

- Diagonals $0 \le h_{ii} \le 1$ and sum to p
- Also known as the leverage of *i*th case
- Is a measure of distance between the X value and the mean of the X values for all n cases $(\overline{X}_1, \overline{X}_2, ..., \overline{X}_{p-1})$
- Since $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$

$$\hat{Y}_i = h_{i1}Y_1 + h_{i2}Y_2 + \ldots + h_{in}Y_n$$

• Thus h_{ii} is a measure of how much Y_i is contributing to the prediction of \hat{Y}_i

Hat Matrix Diagonals

• Residual

$$e = (I - H)Y$$

$$Var(e) = (I - H)\sigma^{2}$$

$$Var(e_{i}) = (1 - h_{ii})\sigma^{2}$$

- Large h_{ii} means small residual variance
 - \hat{Y}_i will be close to Y_i (i.e., model is forced to fit this observation closely)
- Observations with large h_{ii} considered influential
 - large h_{ii} if it is more than double of the average value, i.e., $h_{ii} > 2p/n$
- Can compute $\mathbf{X}'_{new}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_{new}$ to check for hidden extrapolation

Identifying Influential Cases

Cook's Distance

- Measures influence of a case on the prediction of <u>all</u> \hat{Y}_i 's
- Standardized version of sum of squared differences between fitted values with and without case *i*

$$D_i = \frac{\sum_{j=1}^n (\hat{Y}_j - \hat{Y}_{j(i)})^2}{p \cdot \mathsf{MSE}} = \frac{(\mathbf{b}_{(i)} - \mathbf{b})'(\mathbf{X}'\mathbf{X})(\mathbf{b}_{(i)} - \mathbf{b})}{p \cdot \mathsf{MSE}}$$

- can be obtained in a single fit

$$D_i = \frac{e_i^2 h_{ii}}{p \mathsf{MSE}(1 - h_{ii})^2}$$

- Compare with F(p, n-p)
- Concern if D_i is above the 50%-tile of F(p, n-p)

Multicollinearity Diagnostics: VIF

- Use Variance Inflation Factor (VIF)
- VIF_k is the the kth diagonal element of r_{XX}^{-1} (inverse of sample correlation matrix)

$$\mathsf{VIF}_{k} = (r_{XX}^{-1})_{kk} = \frac{1}{1 - R_{k}^{2}}$$

- where R_k^2 is the coefficient of multiple determination of X_k regressed versus all other p-2 variables.
- In standardized regression (all X columns are standardized)

$$Var(\mathbf{b}^{*}) = (\sigma^{*})^{2} \mathbf{r}_{X'X}^{-1}$$

$$Var(\mathbf{b}_{k}^{*}) = (\sigma^{*})^{2} (r_{XX}^{-1})_{kk} = (\sigma^{*})^{2} \text{ VIF}_{k}$$

- VIF of 10 or more suggests strong multicollinearity
- Also compare mean VIF to 1

Weighted Least Squares

Downweight influential observations

• The weighted least squares method minimizes

$$Q_w = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' \mathbf{W} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

- where
$$\mathbf{W} = diag\{w_1, \cdots, w_n\}$$
,

• By taking a derivative of Q_w , obtain normal equations:

$$(X'WX)b = X'WY$$

• Solution of the normal equations:

$$b = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{Y}$$

• Can also be viewed as solution for unequal variance scenario

Unequal Error Variances

• Consider $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where $\sigma^2(\boldsymbol{\varepsilon}) = \mathbf{W}^{-1}$

- Potentially correlated errors and unequal variances

- Special case: $\mathbf{W} = diag\{w_1, w_2, \cdots, w_n\}$
 - Heterogeneous variance or *heteroscedasticity*
 - Homogeneous variance or homoscedasticity if $w_1 = w_2 = \cdots = w_n = 1/\sigma^2$
 - Least square estimation still yields unbiased estimation, but is no longer optimal, and gives wrong uncertainty quantification
- \bullet Consider a transformation based on a known ${\bf W}$

$$\begin{split} \mathbf{W}^{1/2}\mathbf{Y} &= \mathbf{W}^{1/2}\mathbf{X}\boldsymbol{\beta} + \mathbf{W}^{1/2}\boldsymbol{\varepsilon} \\ & \downarrow \\ \mathbf{Y}_w &= \mathbf{X}_w\boldsymbol{\beta} + \boldsymbol{\varepsilon}_w \end{split}$$

• Can show $\mathsf{E}(\varepsilon_w) = 0$ and $\sigma^2(\varepsilon_w) = \mathbf{I}$

Connection

• Least square problem for $\mathbf{Y}_w, \mathbf{X}_w$

$$Q_w = (\mathbf{Y}_w - \mathbf{X}_w \beta)' (\mathbf{Y}_w - \mathbf{X}_w \beta) = (\mathbf{Y} - \mathbf{X}\beta)' \mathbf{W} (\mathbf{Y} - \mathbf{X}\beta)$$

- Must determine optimal weights
- \bullet Optimal weights \propto 1/variance
- Methods to determine weights, if no prior information of variance
 - Find relationship between the absolute residual and another variable and use this as a model for the standard deviation
 - Instead of the absolute residual, use the squared residual and find function for the variance
 - Use grouped data or approximately grouped data to estimate the variance

Ridge Regression as Multicollinearity Remedy

- Modification of least squares that overcomes multicollinearity problem
- Recall least squares suffers because (X'X) is almost singular thereby resulting in highly unstable parameter estimates
- Ridge regression results in biased but more stable estimates
- After standardizing data, we consider the correlation transformation so the normal equations are given by $\mathbf{r}_{XX}\mathbf{b} = \mathbf{r}_{YX}$. Since \mathbf{r}_{XX} difficult to invert, we add a bias constant, c.

$$\mathbf{b}^R = (\mathbf{r}_{XX} + c\mathbf{I})^{-1}\mathbf{r}_{YX}$$

We then tranform it back to coefficient estimators for the orignal data.

Choice of c

- Key to approach is choice of \boldsymbol{c}
- Common to use the *ridge trace* and VIF's
 - Ridge trace: simultaneous plot of p-1 parameter estimates for different values of $c \ge 0$. Curves may fluctuate widely when c close to zero but eventually stabilize and slowly converge to 0.
 - VIF's tend to fall quickly as c moves away from zero and then change only moderately after that
- Choose c where things tend to "stabilize"

Chapter Review

- Multiple linear regression
- Estimation and inferences
- Diagnose and Remedy