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The Data and Model

• Still have single response variable Y

• Now have multiple explanatory variables

• Examples:

– Blood Pressure vs Age, Weight, Diet, Fitness Level

– Traffic Count vs Time, Location, Population, Month

• Goal: There is a total amount of variation in Y (SSTO). We

want to explain as much of this variation as possible using a

linear model and our explanatory variables

Yi = β0 + β1Xi1 + · · · + βp−1Xi,p−1 + εi

• Have p− 1 predictors −→ p coefficients
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General Linear Model

However, it can be much more flexible than just using the original
response and explanatory variables in your data set

• Polynomial regression:

Yi = β0 + β1Xi + β2X
2
i + εi

:= β0 + β1Xi1 + β2Xi2 + εi

• cross product term:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi2 ∗Xi1 + εi
:= β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

• Transformed response:

log(Yi) = β0 + β1Xi1 + β2Xi2 + εi

• Factor analysis is also a multiple linear regression

Still linear models (of β’s), while the meaning of β is different
(will discussed later)
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General Linear Regression In Matrix Terms

• After transformation and re-organization, a linear model (“lin-
ear” w.r.t. unknown coefficient, not to actual predictors) is
obtained

Yi = β0 + β1Xi1 + · · · + βp−1Xi,p−1 + εi

• As an arrayY1

Y2...
Yn

 =

1 X11 X12 · · · X1 p−1

1 X21 X22 · · · X2 p−1
... ... ... ... ...
1 Xn1 Xn2 · · · Xn p−1




β0

β1

β2...
βp−1

 +

 ε1
ε2...
εn



• In matrix notation

Y = Xβ +ε

• Distributional assumptions:

ε ∼ N(0, σ2I) −→ Y ∼ N(Xβ, σ2I)
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Estimation, Fitted value and Residuals

• Least squares estimates b = (X′X)−1X′Y

• Fitted values: Ŷ = X(X′X)−1X′Y = HY define a (hyper)plane.

• Residuals: e = Y − Ŷ = (I−H)Y

• Expected value E(e) = 0

• Covariance Matrix

σ2(e) = σ2(I−H)(I−H)′

= σ2(I−H)

– Var(ei) = σ2(1− hii) where hii = X′
i(X

′X)−1Xi

– Residuals are usually correlated, i.e., cov(ei, ej) = −σ2hij, i ̸= j

• Will use this information for diagnose
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Estimation of σ2

• Similar approach as before

• Estimate it from e, since e has nothing to do with βi’s.

• Now p model parameters

s2 =
e′e

n− p

=
(Y −Xb)′(Y −Xb)

n− p

=
SSE

n− p

= MSE

• Specifically, SSE∼ σ2χ2
rank of (I−H)
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ANOVA TABLE

Source of
Variation df SS MS F Value
Regression p− 1 SSR MSR=SSR/(p− 1) MSR/MSE
(Model)

Error n− p SSE MSE=SSE/(n− p)

Total n− 1 SSTO

• F Test: Tests if the predictors collectively help explain the

variation in Y

– H0 : β1 = β2 = . . . = βp−1 = 0

– Ha : at least one βk ̸= 0, 1 ≤ k ≤ p− 1

– F ∗ = SSR/(p−1)
SSE/(n−p)

H0∼ F (p− 1, n− p)

– Reject H0 if F ∗ > F (1− α, p− 1, n− p)

• No conclusions possible regarding individual predictors
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Testing Individual Predictor

• Have already shown that b ∼ N
(
β, σ2(X′X)−1

)
– This implies bk ∼ N(βk, σ

2(bk))

• Perform t test

– H0 : βk = β0
k vs Ha : βk ̸= β0

k

– t∗ =
bk−β0

k
s(bk)

∼ tn−p under H0

– P-value = Pr(|tn−p| ≥ t∗)

– Reject H0 if |t∗| > t(1− α/2, n− p) or P-value < α

• Confidence interval for βk

– bk ± t(1− α/2, n− p)s{bk}
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Estimation of Mean Response E(Yh)

• interested in making predictions for a new observation, rep-

resented by a p dimensional vector Xh

– Can show Ŷh ∼ N
(
X′

hβ, σ
2X′

h(X
′X)−1Xh

)
– standard error s{Ŷh} =

√
MSEX′

h(X
′X)−1Xh

• Individual CI for Xh

– Ŷh ± t(1− α/2, n− p)s{Ŷh}

• Bonferroni CI for g vectors Xh

– Ŷh ± t(1− α/(2g), n− p)s{Ŷh}

• Working-Hotelling confidence band for the whole regression

line

– Ŷh ±
√
pF (1− α, p, n− p) s{Ŷh}
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Predict New Observation

• Yh(new) = E(Yh) + ε

– Ŷh + ε ∼ N
(
X′

hβ, σ
2(1 +X′

h(X
′X)−1Xh)

)
– s2(pred) = s2(Ŷh) +MSE

• Individual CI of Yh(new)

– Ŷh ± t(1− α/2, n− p)s{pred}

• Bonferroni CI for g vectors Xh

– Ŷh ± t(1− α/(2g), n− p)s{pred}
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General Linear Test

• Comparison of a full model and reduced model that involves

a subset of full model predictors (i.e., hierarchical structure)

• Involves a comparison of unexplained SS

• Consider a full model with k predictors (or k mean parame-

ters) and reduced model with l predictors (l < k)

• One can prove that SSE(R)− SSE(F) ≥ 0.

• Can show that under null hypothesis

F ⋆ =
(SSE(R)− SSE(F))/((n− 1− l)− (n− k − 1))

SSE(F)/(n− k − 1)
∼ Fk−l,n−k−1 distribution

• Degrees of freedom for F ∗ are the number of extra variables

and the error degrees of freedom for the full model
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Example

• Testing the null hypothesis that the regression coefficients

for the extra variables are all zero.

• H0 : βk = 0 vs Ha : βk ̸= 0

– Full Model :

Yi = β0 +
p−1∑
j=1

βjXji + εi

– Reduced Model :

Yi = β0 +
k−1∑
j=1

βjXji +
p−1∑

j=k+1

βjXji + εi

– F ⋆ = (SSE(R)−SSE(F))/1
SSE(F)/(n−p)

– Reject H0 if F ∗ > F (1− α,1, n− p)

• Can show that F ∗ = (t∗)2, i.e., equivalent to the t test
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Extra SS and Notation

• Consider H0 : X1, X3 vs Ha : X1, X2, X3, X4

• Null can also be written H0 : β2 = β4 = 0

• Write SSE(F) and SSE(R) as SSE(X1, X2, X3, X4) and SSE(X1, X3)
respectively

• Difference in SSE’s is the extra SS

SSE(X2, X4|X1, X3) = SSE(X1, X3)− SSE(X1, X2, X3, X4)

• Recall SSM can also be used

SSM(X2, X4|X1, X3) = SSM(X1, X2, X3, X4)− SSM(X1, X3) =⇒
SSM(X1, X2, X3, X4) = SSM(X1, X3) + SSM(X2, X4|X1, X3)

• Can rewrite F test as

F ⋆ =
SSE(X2, X4|X1, X3)/(4− 2)

SSE(X1, X2, X3, X4)/(n− 5)

• If it is possible that neither H0 nor H1 is correct, large p-value doesn’t

necessary provide evidence for H0, but still serves as an evaluation tool

for the usefulness of the additional predictors in H1.
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Type I SS and Type II SS

• Type I and Type II are very different

– Type I is sequential, so it depends on model statement

– Type II is conditional on all others, so it does not depend

on model statement

• For example, model y = x1 x2 x3 yields

Type I Type II
SSM(X1) SSM(X1|X2, X3)
SSM(X2|X1) SSM(X2|X1, X3)
SSM(X3|X1, X2) SSM(X3|X1, X2)

• Could variables be explaining same SS and “canceling” each

other out, such that we need to cautions about testing re-

sults?
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• A case study

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 3 396.98461 132.32820 21.52 <.0001
Error 16 98.40489 6.15031
Corrected Total 19 495.38950

Parameter Estimates
Parameter

Variable DF Estimate Pr > |t| Type I SS Type II SS
Intercept 1 117.08469 0.2578 8156.76050 8.46816
skinfold 1 4.33409 0.1699 352.26980 12.70489
thigh 1 -2.85685 0.2849 33.16891 7.52928
midarm 1 -2.18606 0.1896 11.54590 11.54590

• Set of three variables helpful in predicting body fat (P < 0.0001)

• None of the individual parameters is significant

– Addition of each predictor to a model containing the other two is not
helpful

– More than 90% of Type I SS of skinfold can also be explained by
thigh and midarm
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Multicollinearity

• Numerical analysis problem is that the matrix X′X is almost

singular (linear dependent columns)

– Makes it difficult to take the inverse

– Generally handled with current algorithms

• Statistical problem: too much correlation among predictors

– The coefficient estimation lacks interpretability.

– Difficult to determine regression coefficients −→ Increased

standard error

– May not affect prediction accuracy if the testing samples

follow similar multicollinear correlation.

• Want to refine model to remove redundancy in the predictors
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• Investigate the model via general linear tests: fat=skinfold

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 1 352.26980 352.26980 44.30 <.0001
Error 18 143.11970 7.95109
Corrected Total 19 495.38950

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 -1.49610 3.31923 -0.45 0.6576
skinfold 1 0.85719 0.12878 6.66 <.0001

• Skinfold now helpful. Note the change in coefficient estimate and stan-
dard error compared to the full model.
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Residuals for Diagnostics

• e = Y − Ŷ = (I−H)Y

– I−H symmetric and idempotent

• Expected value E(e) = 0

• Covariance matrix

σ2(e) = σ2(I−H)(I−H)′

= σ2(I−H)

– Var(ei) = σ2 · (1− hii) where hii = X′
i(X

′X)−1Xi

– Cov(ei, ej) = σ2 · (0− hij) = −σ2hij

• Estimated variance and covariance

– V̂ ar(ei) = MSE · (1− hii)

– Ĉov(ei, ej) = −MSE · hij
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Residuals

• Ordinary residual

ei = Yi − Ŷi → e ∼ MVN(0, (I−H)σ2)

– residuals do not have the same variance,
but depend on Xi

• Semi-studentized residual

ri =
ei√
MSE

– denominator is not an estimate of SD of ei

• (Internally) Studentized Residual

ri =
ei√

MSE(1− hii)

– denominator is the estimate of SD of ei

• “Studentized” residual doesn’t follow the student t distribu-
tion (but a τ distribution)

• Outlier may not have a outstanding studentized residual
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Deleted Residual

• Deleted residual (a refinement of residual)

di = Yi − Ŷi(i) =
ei

1− hii

– (Xi, Yi) was not used to fit the model

– can calculate di in a single model fit

• Standard deviation of deleted residuals

s2{di} = MSE(i) · (1 +X′
i(X

′
(i)X(i))

−1Xi)

=
MSE(i)

1− hii

• Studentized deleted residual (externally studentized residual)

ti =
di

s{di}
=

ei
1− hii

·
√√√√ 1− hii
MSE(i)

=
ei√

MSE(i)(1− hii)
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Studentized Deleted Residuals

• If there is only one outlier, its studentized deleted residual

will be outstanding

• Useful for identifying outlying Y observation

– Test Hi0 : E[Yi] = Xiβ vs Hia : E[Yi] ̸= Xiβ

• If there are no outlying observations,

ti ∼ tn−1−p

– can compare ti to this reference distribution

– adjust for n tests using Bonferroni

– an outlier has |ti| > t1−α/(2n)(n− 1− p)

– ti are not independent
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Identifying Outlying X: Hat Matrix Diagonals

• Diagonals 0 ≤ hii ≤ 1 and sum to p

• Also known as the leverage of ith case

• Is a measure of distance between the X value and the mean

of the X values for all n cases (X1, X2, ..., Xp−1)

• Since Ŷ = HY

Ŷi = hi1Y1 + hi2Y2 + . . . + hinYn

• Thus hii is a measure of how much Yi is contributing to the

prediction of Ŷi
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Hat Matrix Diagonals

• Residual

e = (I−H)Y

V ar(e) = (I−H)σ2

V ar(ei) = (1− hii)σ
2

• Large hii means small residual variance

– Ŷi will be close to Yi (i.e., model is forced to fit this ob-

servation closely)

• Observations with large hii considered influential

– large hii if it is more than double of the average value,

i.e., hii > 2p/n

• Can compute X′
new(X

′X)−1Xnew to check for hidden extrap-

olation
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Identifying Influential Cases

Cook’s Distance

• Measures influence of a case on the prediction of all Ŷi’s

• Standardized version of sum of squared differences between

fitted values with and without case i

Di =

∑n
j=1 (Ŷj − Ŷj(i))

2

p ·MSE
=

(b(i) − b)′(X′X)(b(i) − b)

p ·MSE

– can be obtained in a single fit

Di =
e2i hii

pMSE(1− hii)2

• Compare with F (p, n− p)

• Concern if Di is above the 50%-tile of F (p, n− p)
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Multicollinearity Diagnostics: VIF

• Use Variance Inflation Factor (VIF)

• VIFk is the the kth diagonal element of r−1
XX (inverse of sam-

ple correlation matrix)

VIFk = (r−1
XX)kk =

1

1−R2
k

– where R2
k is the coefficient of multiple determination of

Xk regressed versus all other p− 2 variables.

• In standardized regression (all X columns are standardized)

V ar(b∗) = (σ∗)2 r−1
X ′X

V ar(b∗
k) = (σ∗)2(r−1

XX)kk = (σ∗)2 VIFk

• VIF of 10 or more suggests strong multicollinearity

• Also compare mean VIF to 1
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Weighted Least Squares

Downweight influential observations

• The weighted least squares method minimizes

Qw = (Y −Xβ)′W(Y −Xβ)

– where W = diag{w1, · · · , wn},

• By taking a derivative of Qw, obtain normal equations:

(X′WX)b = X′WY

• Solution of the normal equations:

b = (X′WX)−1X′WY

• Can also be viewed as solution for unequal variance scenario
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Unequal Error Variances

• Consider Y = Xβ + ε where σ2(ε) = W−1

– Potentially correlated errors and unequal variances

• Special case: W = diag{w1, w2, · · · , wn}

– Heterogeneous variance or heteroscedasticity

– Homogeneous variance or homoscedasticity if w1 = w2 =
· · · = wn = 1/σ2

– Least square estimation still yields unbiased estimation,
but is no longer optimal, and gives wrong uncertainty
quantification

• Consider a transformation based on a known W

W1/2Y = W1/2Xβ +W1/2ε

↓
Yw = Xwβ + εw

• Can show E(εw) = 0 and σ2(εw) = I
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Connection

• Least square problem for Yw,Xw

Qw = (Yw −Xwβ)
′(Yw −Xwβ) = (Y −Xβ)′W(Y −Xβ)

• Must determine optimal weights

• Optimal weights ∝ 1/variance

• Methods to determine weights, if no prior information of
variance

– Find relationship between the absolute residual and another variable
and use this as a model for the standard deviation

– Instead of the absolute residual, use the squared residual and find
function for the variance

– Use grouped data or approximately grouped data to estimate the
variance
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Ridge Regression as Multicollinearity Remedy

• Modification of least squares that overcomes multicollinearity

problem

• Recall least squares suffers because (X′X) is almost singular

thereby resulting in highly unstable parameter estimates

• Ridge regression results in biased but more stable estimates

• After standardizing data, we consider the correlation trans-

formation so the normal equations are given by rXXb = rY X.

Since rXX difficult to invert, we add a bias constant, c.

bR = (rXX + cI)−1rY X

We then tranform it back to coefficient estimators for the

orignal data.
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Choice of c

• Key to approach is choice of c

• Common to use the ridge trace and VIF’s

– Ridge trace: simultaneous plot of p − 1 parameter estimates for dif-
ferent values of c ≥ 0. Curves may fluctuate widely when c close to
zero but eventually stabilize and slowly converge to 0.

– VIF’s tend to fall quickly as c moves away from zero and then change
only moderately after that

• Choose c where things tend to “stabilize”
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Chapter Review

• Multiple linear regression

• Estimation and inferences

• Diagnose and Remedy
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