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The Data and Model]

Still have single response variable Y
Now have multiple explanatory variables

Examples:

— Blood Pressure vs Age, Weight, Diet, Fitnhess Level

— Traffic Count vs Time, Location, Population, Month

Goal: There is a total amount of variation in Y (SSTO). We
want to explain as much of this variation as possible using a
linear model and our explanatory variables

Yi=B0+B1X;1+ - +Bp—1Xip—1te&;

Have p — 1 predictors — p coefficients

7-1



General Linear Model

However, it can be much more flexible than just using the original
response and explanatory variables in your data set

e Polynomial regression:

Y; = Bo+B1X;+ BoXP+e
= o+ B1Xi1 + B2Xio t+ &

e Cross product term:

Y, = Bo+ B1X;1 + BoXio+ B3Xi0* Xj1 + &5
‘= Bo+ B1X;1 + BoXio + B3X;3 + €5

e [ransformed response:
log(Y;) = Bo+ B1X1 + BoXio + ¢
e Factor analysis is also a multiple linear regression

Still linear models (of 3's), while the meaning of 3 is different
(will discussed later)
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General Linear Regression In Matrix Termsl

e After transformation and re-organization, a linear model ( “lin-
ear’” w.r.t. unknown coefficient, not to actual predictors) is
obtained

Yi=pPo+B1Xi1+ - +Bp—1Xip-1+ &

e AS an array

(Y71 ] (1 X131 X1 -0 X1 op-1] go [ e1 ]
Yo | _ 1 Xo1 Xoo -+ Xopa 5; 4| e
| Yo | 11 Xp1 X Xn p—1 ﬁp:—l | En

e In matrix notation

Y = X8 +e

e Distributional assumptions:
e~ N(0,0%I) — Y ~ N(X83, %)
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[Estimation, Fitted value and Residuals]

e Least squares estimates b = (X'X)~1X'Y
e Fitted values: Y = X(X’X)~1X’'Y = HY define a (hyper)plane.
e Residuals: e=Y-Y=O-H)Y
e Expected value E(e) =0

e Covariance Matrix

o?(I-H)({I - H)
o2(I — H)

- Var(ei) = 0'2(1 — hw) where h;; = X;(X’X)_le

o (e)

— Residuals are usually correlated, i.e., cov(e;, e;) = —0?hij, i # j

e Will use this information for diagnose
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Estimation of aQI

e Similar approach as before

e Estimate it from e, since e has nothing to do with j;’'s.

e Now p model parameters

/
32 _ ee
n—p
(Y — Xb) (Y — Xb)
= —
_ SSE
= —
= MSE

e 2,2
o Specifically, SSE~ o°X7nk of (I-H)
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ANOVA TABLEI

Source of

Variation df SS MS F Value

Regression p—1 SSR MSR=SSR/(p—1) MSR/MSE
(Model)

Error n—p SSE MSE=SSE/(n —p)

Total n—1 SSTO

e F Test: Tests if the predictors collectively help explain the
variation in Y

— Hp:B1=082=...=0p-1=0
— Hg:at leastone 3. #0, 1 <k<p-—-1

_ 0+ _ SSR/(p-1) H

— Reject Hy if F* > F(1 —a,p—1,n—p)

e NO conclusions possible regarding individual predictors
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Testing Individual Predictorl

e Have already shown that b~ N (ﬁ,JQ(X/X)_1>
— This implies by, ~ N (B, 72(by,))
e Perform t test

— Ho: B =B} vs Ha: B # B}

by, — 37
* — —k k ~J

—t
— P-value = Pr(|tp—p| > t¥)
— Reject Hy if [t*] > t(1 —a/2,n —p) or P-value < «
e Confidence interval for g3,

— b +t(1 —a/2,n—p)s{b,}
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Estimation of Mean Response E(Yh)l

interested in making predictions for a new observation, rep-

resented by a p dimensional vector Xy

— Can show ¥, ~ N (X},8,02X/ (X'X)"1X,)

— standard error s{Y},} = \/MSEX’h(X’X)—th
Individual CI for Xy

-V, £ t(1 —a/2,n—p)s{¥}}

Bonferroni CI for g vectors Xy,

-V, £ t(1—a/(29),n—p)s{Vp}

Working-Hotelling confidence band for the whole regression

line
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Predict New Observation|

® Yy (new) = E(Yy) +¢
— YV, +e~N (X’hﬁ, o2(1 + X;L(X’X)—th)>
— s2(pred) = s2(Y}) + MSE

e Individual CI Of Y}, ;¢
— Y, £ t(1 —-a/2,n— p)s{pred}

e Bonferroni CI for g vectors X,

-V, £ t(1-«a/(29),n —p)s{pred}
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General Linear Test|

Comparison of a full model and reduced model that involves
a subset of full model predictors (i.e., hierarchical structure)

Involves a comparison of unexplained SS

Consider a full model with k predictors (or k mean parame-
ters) and reduced model with [ predictors (I < k)

One can prove that SSE(R) — SSE(F) > 0.

Can show that under null hypothesis

_ (SSE(R) —SSE(F))/((n—1—-1) — (n— k — 1))
- SSE(F)/(n—k—1)

F* ~ Fk—l,n—k—l distribution

Degrees of freedom for F* are the number of extra variables
and the error degrees of freedom for the full model
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Example

e [esting the null hypothesis that the regression coefficients
for the extra variables are all zero.

e Ho: B =0vVvs Hy: B #=0

— Full Model :

p—1
Y; = fo + Z BiXji + &

j=1
— Reduced Model :
k—1 p—1
Y;=080+ > BiXj;+ ) BiXji+te
j=1 j=k+1

_ e _ (SSE(R)-SSE(F)/1
SSE(F)/(n—p)

— Reject Hy if F* > F(1 —a,1,n—p)

e Can show that F* = (t*)?, i.e., equivalent to the ¢ test
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Extra SS and Notation

e Consider Hg : X1,X3 Vs Hy : Xq, X0, X3,X4
e Null can also be written Hg: 8o =084 =0

e Write SSE(F) and SSE(R) as SSE(Xl,XQ,X3,X4) and SSE(X]_,X3)
respectively

e Difference in SSE’'s is the extra SS
SSE(Xa2, X4|X1,X3) = SSE(X1, X3) — SSE(X1, X», X3, X4)

e Recall SSM can also be used

SSM(XQ,X4|X1,X3) SSM(Xl,XQ,X3,X4) — SSM(Xl,X3) >
SSM(X17X27X37X4) — SSM(X17X3) +SSM(X27X4|X17X3)

e Can rewrite F test as
— SSE(X23X4|X1aX3)/(4 - 2)
SSE(X1, X2, X3, X4)/(n — 5)

*

® If it is possible that neither Hog nor H; is correct, large p-value doesn't
necessary provide evidence for Hp, but still serves as an evaluation tool

for the usefulness of the additional predictors in H;.
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Type I SS and Type Il SS

e Typel and Type Il are very different
— Type I is sequential, so it depends on model statement

— Type Il is conditional on all others, so it does not depend
on model statement

e For example, model y = x1 x2 x3 yields

Type I Type II
SSM(X1) SSM(X1|X5, X3)
SSM(X>5|X1) SSM(X2| X7, X3)

SSM(X3|X1,X5) SSM(X3|X1, X5)

e Could variables be explaining same SS and "canceling” each
other out, such that we need to cautions about testing re-
sults?
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e A case study

Analysis of Variance

Sum of Mean
sSource DF Squares Square F Value Pr > F
Model 3 396.98461 132.32820 21.52 <.0001
Error 16 98.40489 6.15031

Corrected Total 19 495 .38950

Parameter Estimates

Parameter
Variable DF Estimate Pr > |t Type I SS  Type II SS
Intercept 1 117.08469 0.2578 8156.76050 8.46816
skinfold 1 4.33409 0.1699  352.26980 12.70489
thigh 1 -2.85685 0.2849 33.16891 7.52928
midarm 1 -2.18606 0.1896 11.54590 11.54590

e Set of three variables helpful in predicting body fat (P < 0.0001)

e None of the individual parameters is significant

— Addition of each predictor to a model containing the other two is not
helpful

— More than 90% of Type I SS of skinfold can also be explained by
thigh and midarm
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Multicollinearityl

e Numerical analysis problem is that the matrix X’X is almost
singular (linear dependent columns)

— Makes it difficult to take the inverse
— Generally handled with current algorithms
e Statistical problem: too much correlation among predictors

— The coefficient estimation lacks interpretability.

— Difficult to determine regression coefficients — Increased
standard error

— May not affect prediction accuracy if the testing samples
follow similar multicollinear correlation.

e \Want to refine model to remove redundancy in the predictors
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e Investigate the model via general linear tests: fat=skinfold

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 352.26980 352.26980 44 .30 <.0001
Error 18 143.11970 7.95109

Corrected Total 19 495 .38950

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t]
Intercept 1 -1.49610 3.31923 -0.45 0.6576
skinfold 1 0.85719 0.12878 6.66 <.0001

e Skinfold now helpful. Note the change in coefficient estimate and stan-
dard error compared to the full model.
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Residuals for Diagnosticsl

e=Y-Y=O-H)Y
— I — H symmetric and idempotent
Expected value E(e) =0
Covariance matrix

o (e) o?(I-H)(I - H)
o2(I — H)
— Var(e;) = 02 - (1 — hy) where h; = X{(X'X) 71X,

— Cov(ei,e;) = 02 (0 — hij) = —02h;;

Estimated variance and covariance

— Var(e;)) = MSE - (1 — hy)
— Cov(ej,e;) = —MSE - hij
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Residuals

e Ordinary residual
e, =Y, —Y, - e~ MVN(0,(I-H)os?)

— residuals do not have the same variance,
but depend on X;

e Semi-studentized residual
€;

MSE
— denominator is not an estimate of SD of ¢;

r; =

e (Internally) Studentized Residual
e

A VMSE(1 — hy;)

— denominator is the estimate of SD of ¢;

e ''Studentized’ residual doesn’'t follow the student ¢ distribu-
tion (but a 7 distribution)

e Outlier may not have a outstanding studentized residual
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Deleted Residual

e Deleted residual (a refinement of residual)
€;

L — hyj

— (X,,Y;) was not used to fit the model

— can calculate d; in a single model fit

e Standard deviation of deleted residuals
s?{di} = MSEqy - (14 XX X)) X))
1 — hy

e Studentized deleted residual (externally studentized residual)

ti _ dz _ e; \l ].—hZZ

S{di} 1 — hii MSE(,L)

€4

¢Msgﬂu—hm
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Studentized Deleted Residuals

e If there is only one outlier, its studentized deleted residual
will be outstanding

e Useful for identifying outlying Y observation
— Test Hyp : E[Y;] = X8 vs Hy : E[Y;] # X8
e If there are no outlying observations,
ti ~ tp—1_p
— can compare t; to this reference distribution
— adjust for n tests using Bonferroni
— an outlier has [t;| > t1_,/(2p)(n =1 —p)

— t; are not independent
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Identifying Outlying X: Hat Matrix Diagonalsl

e Diagonals 0 < h;; <1 and sum to p
e Also known as the leverage of ith case

e Is a measure of distance between the X value and the mean
of the X values for all n cases (X1,X52,..., X, 1)

e Since Y = HY

Yi =hinY1 + hipYo+ ... + hinYs

e Thus h;; is a measure of how much Y; is contributing to the
prediction of Y;
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Hat Matrix Diagonals

e Residual
e (I-H)Y

Var(e) = (I-H)o?
Var(e;) = (1 — hy)o?

e Large h;; means small residual variance
— Y; will be close to Y; (i.e., model is forced to fit this ob-
servation closely)

e Observations with large h;; considered influential

— large h;; if it is more than double of the average value,
I.e., hy; > 2p/n

e Can compute X/ .. (X'X)"1Xewy to check for hidden extrap-
olation
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Identifying Influential Casesl

Cook’s Distance

e Measures influence of a case on the prediction of all 377;'5

e Standardized version of sum of squared differences between
fitted values with and without case 2

T (Y =Y)? (b — b)Y (X'X)(b(;y — b)
p- MSE o p- MSE
— can be obtained in a single fit
D; = e7hii
pPMSE(1 — hy;)2

D; =

e Compare with F(p,n — p)

e Concern if D; is above the 50%-tile of F'(p,n — p)
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Multicollinearity Diagnostics: VIF |

e Use Variance Inflation Factor (VIF)

e VIF, is the the kth diagonal element of r)_é( (inverse of sam-
ple correlation matrix)

1
2

VIF, = (ryx)re =

— where R% iIs the coefficient of multiple determination of
X} regressed versus all other p — 2 variables.

e In standardized regression (all X columns are standardized)

Var(b*) = (6%)? 17y
Var(by) = (0")?(ryx)ms = (6%)% VIF,

e VIF of 10 or more suggests strong multicollinearity

e Also compare mean VIF to 1
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Weighted Least Squaresl

Downweight influential observations

e [ he weighted least squares method minimizes
Qu = (Y —XB)'W(Y - Xp)
— where W = diag{wq, -, wn},
e By taking a derivative of )y, obtain normal equations:
(X'WX)b = X'WY
e Solution of the normal equations:
b= (X'WX) 1X'WY

e Can also be viewed as solution for unequal variance scenario
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Unequal Error Variances

e Consider Y = X8 4+ ¢ where 02(¢) = W1

— Potentially correlated errors and unequal variances

e Special case: W = diag{wqi,wo, -, wn}

— Heterogeneous variance or heteroscedasticity

— Homogeneous variance or homoscedasticity if wy = wo =
.= wp = 1/0°?

— Least square estimation still vields unbiased estimation,
but is no longer optimal, and gives wrong uncertainty
quantification

e Consider a transformation based on a known W
W1/2Y _ W1/2X/3_|_W1/2€
1

Y w Xw,B + Ew

e Can show E(ey) = 0 and o2(ey) =1
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Connection

e | east square problem for Y, Xy

w= (Y — Xwﬁ)/(Yw — XuwB) = (Y — XB)/W(Y — X03)

e Must determine optimal weights

e Optimal weights o 1/variance

e Methods to determine weights, if no prior information of
variance

— Find relationship between the absolute residual and another variable
and use this as a model for the standard deviation

— Instead of the absolute residual, use the squared residual and find
function for the variance

— Use grouped data or approximately grouped data to estimate the
variance
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Ridge Regression as Multicollinearity Remedy

Modification of least squares that overcomes multicollinearity
problem

Recall least squares suffers because (X'X) is almost singular
thereby resulting in highly unstable parameter estimates

Ridge regression results in biased but more stable estimates

After standardizing data, we consider the correlation trans-
formation so the normal equations are given by rxxb = ryx.
Since ry x difficult to invert, we add a bias constant, c.

b = (rxx + ) 'ryx

We then tranform it back to coefficient estimators for the
orignal data.
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Choice of ¢

e Key to approach is choice of ¢

e Common to use the ridge trace and VIF's

— Ridge trace: simultaneous plot of p — 1 parameter estimates for dif-
ferent values of ¢ > 0. Curves may fluctuate widely when ¢ close to
zero but eventually stabilize and slowly converge to O.

— VIF's tend to fall quickly as ¢ moves away from zero and then change
only moderately after that

e Choose ¢ where things tend to ‘‘stabilize”
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Chapter Reviewl

e Multiple linear regression
e Estimation and inferences

e Diagnose and Remedy
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