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Goals of Regression Analysis

Regression: use data (Yi, Xi) to find out a relationship

E(Y ) = fβ(X),

or median, mode of Y if possible.

• Serve three purposes

– Describes an association between X and Y

∗ In some applications, the choice of which variable is X and which
is Y can be arbitrary

∗ Association generally does not imply causality

– In experimental settings, helps select X to control Y at the desired
level

– Predict a future value of Y at a specific value of X
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Straight Line Mean Equation

• Formula for a straight line

E(Yi) = β0 + β1Xi, or E(Yi|Xi) = β0 + β1Xi

– β0 is the intercept

– β1 is the slope

• Need to estimate β0 and β1
i.e. determine their plausible values from the data

• Will use method of least squares (OLS estimator).

7-2



Simple Linear Regression Model

Yi = β0 + β1Xi + εi

• β0 is the intercept

• β1 is the slope

• εi is the ith random error term

– Mean 0, i.e. E(εi) = 0

– Constant Variance σ2, i.e. V ar(εi) = σ2

– Uncorrelated, i.e. Cov(εi, εj) = 0

– Independent to Xi if Xi is random
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Estimation of Regression Function

• Consider the deviation of observed data Yi from a straight

line with slope a and intercept b,

Yi − (aXi + b)

it measures how good the line ax+ b fits the data (Xi, Yi) in

terms of vertical distance

• Method of least squares (smallest sum of squared derivation)

– Find the value of a and b which minimize

Q =
n∑

i=1

[Yi − (aXi + b)]2

– Motivated by E(Y ) = argminbE(Y − b)2 ≈ argminb
∑
(Yi−

b)2/n.
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Estimating β’s

• β1 is the true unknown slope

– Defines change in E(Y ) for change in X, i.e.,

β1 =
∆E(Y )

∆X

• b1 is the least squares estimate of β1

b1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

• β0 is the true unknown intercept

– β0 is the expected value of Y under X = 0

E(Y ) = β1X + β0 = β1 ×X + β0 = β0

• b0 is the least squares estimate of β0

b0 = Y − b1X

that is, the fitted line goes through (X,Y ).
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Properties of Estimates

• b1 is a linear estimator, i.e., a linear combination of Yi’s.

b1 =
n∑

i=1

(Xi −X)(Yi − Y )∑n
i=1(Xi −X)2

=
n∑

i=1

(Xi −X)Yi∑n
i=1(Xi −X)2

=
n∑

i=1

(Xi −X)∑n
i=1(Xi −X)2

Yi

=
n∑

i=1

kiYi

where ki = (Xi −X)/
∑n

i=1(Xi −X)2

• Note that
∑

ki = 0,
∑

kiXi = 1, thus

E(b1) =
∑

kiE(Yi) =
∑

ki(β0 + β1Xi)

= β0
∑

ki + β1
∑

kiXi

= 0+ β1,
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• b0 is also a linear combination of Yi’s,

b0 = Y − b1X =
n∑

i=1

1

n
Yi −X

n∑
i=1

kiYi

=
n∑

i=1

(
1

n
−

X(Xi −X)∑n
i=1(Xi −X)2

)
Yi

=
n∑

i=1

k̃iYi

where

k̃i =
1

n
−

X(Xi −X)∑
(Xi −X)2

• Note
∑

k̃i = 1,
∑

k̃iXi = 0.

E(b0) =
∑

k̃iE(Yi) =
∑

k̃i(β0 + β1Xi)

= β0
∑

k̃i + β1
∑

k̃iXi

= β0 +0,
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Estimated Regression Line

• Using the estimated parameters, the fitted regression line is

Ŷi = b0 + b1Xi

where Ŷi is the estimated value at Xi (Fitted value).

• Fitted value Ŷi is also an estimate of the mean response E(Yi)

• Ŷi =
∑n

j=1(k̃j+Xikj)Yj =
∑n

j=1 ǩijYj is also a linear estimator

• E(Ŷi) = E(b0+b1Xi) = E(b0)+E(b1)Xi = β0+β1Xi = E(Yi)

• Gauss-Markov theorem: b0, b1 and Ŷi have minimum variance

among all unbiased linear estimators.

7-8



Residuals

• The residual is the difference between the observed and fitted

values

ei = Yi − Ŷi

• This is not the error term εi = Yi − E(Yi)

• The ei is observable while εi is not

–
∑

ei=0

–
∑

Yi =
∑

Ŷi

–
∑

Xiei = 0

–
∑

Ŷiei = 0
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Estimation of Error Variance

• In regression model

s2 =

∑
(Yi − Ŷi)

2

n− 2

– Also known as the mean square error (MSE)

– Two df lost by using (b0, b1) in place of (β0, β1)

– unbiased estimation∑
(Yi − Ŷi)

2 =
∑

ei(Yi − Ŷi) =
∑

eiYi

=
∑

ei(β0 + β1Xi + εi) =
∑

eiεi

=
∑

Yiεi −
∑

Ŷiεi,

E(Yiεi) = E(β0 + β1Xi + εi)εi = E(ε2) = σ2,

E(Ŷiεi) = E(
n∑

j=1

ǩijYj)εi = EǩiiYiεi = ǩiiσ
2

Note that ǩii = k̃i+Xiki and the properties of ki and k̃i, we can show
that E(s2) = σ2
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Normal Error Regression Model

Yi = β0 + β1Xi + εi, εi ∼iid N(0, σ2)

• the random error term is assumed to be independent nor-

mally distributed

• Defines distribution of random variable Yi

Yi ∼ N(β0 + β1Xi, σ
2)

• The normality assumption will greatly simplifies the theory

of analysis beyond estimations, allows us to construct confi-

dence intervals / perform hypothesis tests

• Most inferences are only sensitive to large departures from

normality

7-11



Sampling Distribution of bi’s

• Under the normality assumption, b1 also follows a normal
distribution since it is a linear combination of normal r.v.s.

• It is sufficient to figure the first two moments of b1:

E(b1) = β1,

V ar(b1) =
∑

k2i V ar(Yi) =
σ2∑n

i=1(Xi −X)2
.

• Therefore

b1 ∼ N(β1, σ
2/

n∑
i=1

(Xi −X)2)

• b0 is also a linear combination of Yi’s, b0 =
∑

k̃iYi, thus by
normal assumption, b0 ∼ N(E(b0), V ar(b0)), where

E(b0) = β0,

V ar(b0) =
∑

k̃2i V ar(Yi) = σ2
[
1

n
+

X2∑
(Xi −X)2

]
.
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t-test for H0 : β1 = β0
1

• Consider statistics
b1−β0

1
se(b1)

, where standard error of b1 means

an estimation for the
√
V ar(b1).

• se(b1) =
√
s2/

∑n
i=1(Xi −X)2, that is to replace the unknown

σ2 by its unbiased estimator s2 = MSE =
∑
(Yi− Ŷi)

2/(n−2),

• The test statistics is

b1 − β0
1

se(b1)
=

b1 − β0
1√

s2/
∑n

i=1(Xi −X)2

• (n − 2)s2/σ2 ∼ χ2
n−2 and s2 is independent to b1 (will be

proved later), then
b1−β0

1
se(b1)

∼ tn−2
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t-test for H0 : β1 = β0
1

t-test statistics t∗ =
b1−β0

1
se(b1)

under level α

• Reject if |t∗| ≥ t(1−α/2, n−2) or p-value P (|tn−2| ≥ |t∗|) ≤ α

C.I for β1

b1 ± t(1− α/2, n− 2)se(b1)

Similar inference for β0.
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Comments

• When errors not normal, procedures are generally reasonable

approximations

• Procedures can be modified for one-sided test / confidence

intervals

• To obtain an accurate interval estimation, at design stage,

choose Xi such that

–
∑
(Xi −X)2 is large → smaller margin of error for β1

–
∑
(Xi −X)2 is large and |X| is small → smaller margin of

error for β0
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Interval Estimation of E(Yh)

• Often interested in estimating the mean response for partic-

ular Xh, i.e., the parameter of interests is E(Yh) = β0+β1Xh.

• Unbiased estimation is Ŷh = b0 + b1Xh.

• Derive the sampling distribution of b0+b1Xh in order to make

test and CI.

– Ŷh =
∑

ǩiYi where ki =
1
n + (Xh−X)(Xi−X)∑

(Xi−X)2

– E(Ŷh) = β0 + β1Xh

– V ar(Ŷh) = σ2
[
1
n + (Xh−X)2∑

(Xi−X)2

]
, se2(Ŷh) = s2

[
1
n + (Xh−X)2∑

(Xi−X)2

]
.

– Test: (Ŷh−null value)/se(Ŷh); CI: Ŷh±t(1−α/2, n−2)se(Ŷh)
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Interval Prediction of Yh(new)

• Predicting future observation Yh(new) = E[Yh] + εh(new)

• The prediction interval for a unknown r.v., i.e., P (L < Yh(new) <

U) = 1− α

• Comparing with CI of E[Yh], one need to take account of

future error εh(new).

– E(b0 + b1Xh) = E(Yh(new))

– V ar(Yh(new) − b0 + b1Xh) = σ2
[
1+ 1

n + (Xh−X)2∑
(Xi−X)2

]
– se2(Yh(new) − b0 + b1Xh) = s2

[
1+ 1

n + (Xh−X)2∑
(Xi−X)2

]

– PI: b0 + b1Xh ± t(1− α/2, n− 2)

√
s2
[
1+ 1

n + (Xh−X)2∑
(Xi−X)2

]
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Confidence Band for Response Means

• Consider the entire regression line

• Want to define a likely region within which this unknown real

line lies

• Rigorously, P (L(x) < β0 + β1x < U(x) for all x) ≥ 1− α

• One can show

max
x

[
b0 + b1x− (β0 + β1x)

se(Ŷh)(x)

]2
∼ 2F2,n−2

• Replace t(1−α/2, n−2) with Working-Hotelling value in each

confidence interval

W =
√
2F (1− α; 2, n− 2) ⇒ Ŷh ±W × se(Ŷh)

• Boundary values define a hyperbola
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Confidence Band vs C.I. vs P.I.

• Blue – 95% confidence band; widest when Xh −X is large

• Red – 95% confidence interval for the mean; always narrowest

• Green – 95% confidence interval for the individual prediction; widest
when Xh −X is small
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ANOVA approach

• Organizes results arithmetically

• The total sum of squares in Y is defined

SSTO =
∑

(Yi − Y )2

• Can partition the total sum of squares into

– Model (explained by regression)

– Error (unexplained / residual)

∑
(Yi − Y )2 =

∑
(Yi − Ŷi + Ŷi − Y )2

=
∑

(Yi − Ŷi)
2 +

∑
(Ŷi − Y )2

SSTO = SSE + SSR
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Sum of Squares

• Can also express

SSR =
∑

(Ŷi − Y )2

=
∑

(b0 + b1Xi − b0 − b1X)2

= b21
∑

(Xi −X)2

• Degrees of freedom is 1 due to normality of b1 for some δ.

• SSR large when Ŷi’s are different from Y

• Error sum of squares is equal to the sum of squared residuals

SSE =
∑

(Yi − Ŷi)
2 =

∑
e2i

• Degrees of freedom is n− 2 due to using (b0, b1) in place of

(β0, β1), and SSE ∼ σ2χ2
n−2

• The MSE = SSE/(n−2) and represents an unbiased estimate

of σ2 when taking X into account
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F Test

• Can use this structure to test H0 : β1 = 0

• Consider

F ∗ =
MSR

MSE

• If β1 = 0, then F ∗ should be near one, since both denominator
and numerator are of mean
sigma2.

• Need sampling distribution of F ∗ under H0 to obtain p-value.

•

F ∗sim F1,n−2

• When H0 is false, F ∗ tends to be large

• p-value = Pr(F (1, n− 2) > F ∗)

• Reject when F ∗ > F1,n−2,1−α, or p-value < α
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General Linear Test

• A third way to test for linear association

• Consider two models

– Full model: Yi = β0 + β1Xi + εi

– Reduced model: Yi = β0 + εi

• Will compare models using SSE’s

– Error sum of squares of the full model will be labeled

SSE(F)

– Error sum of squares of the reduced model will be labeled

SSE(R)

• Note: SSTO is the same under each model
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• Reduced model corresponds to H0 : β1 = 0

• Can be shown that SSE(F) ≤ SSE(R)

• Idea: more parameters provide better fit

• If SSE(F) is not much smaller than SSE(R), full model doesn’t

better explain Y .

F ∗ =
(SSE(R)− SSE(F))/(dfR − dfF )

SSE(F)/dfF

=
(SSTO− SSE)/1

SSE(F)/(n− 2)

• Same test as before, but will have a more general use in

multiple regression
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Diagnose

• use a residual plots (ei vs Ŷi) to check

– linearity

– constant variance

– never plot ei vs Yi

– normality

• Boxcox transformation
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Matrix Approach

• Consider example with n = 4

• Consider expressing observations:

Y1 = β0 + β1X1 +ε1
Y2 = β0 + β1X2 +ε2
Y3 = β0 + β1X3 +ε3
Y4 = β0 + β1X4 +ε4Y1

Y2

Y3

Y4

 =

β0 + β1X1

β0 + β1X2

β0 + β1X3

β0 + β1X4

 +

 ε1
ε2
ε3
ε4


Y1

Y2

Y3

Y4

 =

1 X1

1 X2

1 X3

1 X4

[β0

β1

]
+

 ε1
ε2
ε3
ε4


Y = Xβ +ε

• X is called the design matrix
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Regression Matrices

• Can express observations

Y = Xβ +ε

• Both Y and ε are random vectors

E(Y) = Xβ +E(ε)
= Xβ

σ2(Y) = 0 +σ2(ε)
= σ2I
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Least Squares

• Express quantity Q

Q = (Y −Xβ)′(Y −Xβ)

= Y′Y − β′X′Y −Y′Xβ + β′X′Xβ

= Y′Y − 2β′X′Y + β′X′Xβ

– (Xβ)′ = β′X′

• Taking derivative −→ −2X′Y +2X′Xβ = 0

– ∂
∂ββ

′X′Y = X′Y

– ∂
∂ββ

′X′Xβ = 2X′Xβ

• This means b = (X′X)−1X′Y
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Fitted Values

• The fitted values Ŷ = Xb = X(X′X)−1X′Y

• Matrix H = X(X′X)−1X′ is called the hat matrix

– H is symmetric, i.e., H′ = H

– H is idempotent, i.e., HH = H

• Equivalently write Ŷ = HY

• Matrix H used in diagnostics (Chapter 9)
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Residuals

• Residual matrix

e = Y − Ŷ

= Y −HY

= (I−H)Y

• e is a random vector

E(e) = (I−H)× E(Y)
= (I−H)Xβ

= Xβ −Xβ

= 0

σ2(e) = (I−H)× σ2(Y)× (I−H)′

= (I−H)σ2I(I−H)′

= (I−H)σ2
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Inference

• Vector b = (X′X)−1X′Y = AY

• The mean and variance are

E(b) = (X′X)−1X′E(Y)
= (X′X)−1X′Xβ

= β

σ2(b) = A× σ2(Y)×A′

= A× σ2I×A′

= σ2AA′

= σ2(X′X)−1

• Thus, b is multivariate Normal(β, σ2(X′X)−1)

• SSE = (e)′(e) = Y′(I−H)Y ∼ σ2χ2
n−2

• Since b and (e) are indep, SSE and b are independent
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Chapter Review

• Simple linear regression

• OLS estimation and prediction

• Inference and confidence band
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