Purdue-NCKU program

Lecture 7
Simple Linear Regression

Dr. Qifan Song



'Goals of Regression Analysis|

Regression: use data (Y}, X;) to find out a relationship

E(Y) = f3(X),

or median, mode of Y if possible.

e Serve three purposes
— Describes an association between X and Y

* In some applications, the choice of which variable is X and which
is 'Y can be arbitrary

x Association generally does not imply causality

— In experimental settings, helps select X to control Y at the desired
level

— Predict a future value of Y at a specific value of X
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Straight Line Mean Equation

e Formula for a straight line

E(Y;) = Bo + B1X;, or E(Y;|X;) = Bo + B1X;

— [Bo is the intercept

— (1 is the slope

e Need to estimate [y and 33
i.e. determine their plausible values from the data

e Will use method of least squares (OLS estimator).
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* 5o
° 51

Simple Linear Regression Modell

Y; = Bo + B1X; + <

IS the intercept

IS the slope

e ¢, is the " random error term

Mean O, i.e. E(g;) =0
Constant Variance o2, i.e. Var(e;) = o2
Uncorrelated, i.e. Cov(g;e5) =0

Independent to X; if X, is random
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Estimation of Regression Functionl

e Consider the deviation of observed data Y, from a straight
line with slope a and intercept b,

Y; — (aX; +b)

it measures how good the line ax + b fits the data (X;,Y;) in
terms of vertical distance

e Method of least squares (smallest sum of squared derivation)

— Find the value of a and b which minimize
mn

Q= > [¥;— (aX; +b)]?
i=1

— Motivated by E(Y) = argmin, E(Y —b)? ~ arg min, > (Y; —
b)2/n.
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Estimating 5’s

e (31 is the true unknown slope

— Defines change in E(Y) for change in X, i.e.,
_ AE(Y)
AX
e by is the least squares estimate of 34
_ S (X = X)(% — V)
Y (X = X)?

51

b1

e 3o is the true unknown intercept
— Bp is the expected value of Y under X =0
E(Y)=p1X+Bo=081xX+Bo=Po
e by is the least squares estimate of 3j
bp=Y — b1 X
that is, the fitted line goes through (X,Y).
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Properties of Estimates

e b1 is a linear estimator, i.e., a linear combination of Y;’s.

b1=z

(X; —

(Y, -Y) & (X, —X)Y,

S (X - X)?2 _Z;z (X — X)?

(Xi — X)

> (X —Xx)2 "
= Z’%Yz'

where k; = (X; — X) /S0 1 (X; — X)?

e Note that ) _ k; =0, > k;X; = 1, thus

E(b1)

Y KE(Y;) =) ki(Bo+ B1X;)
Bod ki+B1> kiX;
0 +Bl7

7-6



® bp is also a linear combination of Y}'s,

bp = YV —b1 X = Z ly, - XZkY
—1 " =1

- v (Lo D)y,
z%(n Z?zl(Xi—X)Q

where

T (X - X)?

L1 X(XG-X)

e Note ZEZ =1, ZEZXZ = 0.

E(bg) = > kE(Y;) =) ki(Bo+ B1X;)
Bo> ki+B1) kiX;
= Bo+0,
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Estimated Regression Line

e Using the estimated parameters, the fitted regression line is

~~

Y; = bg + b1.X;

where Y, is the estimated value at X, (Fitted value).
e Fitted value Y, is also an estimate of the mean response E(Y;)
o V. = Z?zl(l"éj +Xikj)Y; =04 ki;Y; is also a linear estimator

o E(YV;) = E(bg+b1X;) = E(bg) + E(b1)X; = Bo+ 51X; = E(Y;)

e Gauss-Markov theorem: bg, by and Y; have minimum variance
among all unbiased linear estimators.
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Residuals|

e [ he residualis the difference between the observed and fitted
values

e, =Y, —Y;

e This is not the error term ¢;, =Y; — E(Y;)

e T he ¢e; is observable while g; is not

— > e¢;=0
—LYi=YY;
— > . X;e; =0
— X Yie; =0
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Estimation of Error Variance]|

e In regression model

22— ¥i)?
n—2
— Also known as the mean square error (MSE)
— Two df lost by using (bg,b1) in place of (Bo, 51)
— unbiased estimation
Y Wi-Y)? = ) e(Vi-Y) =) e
= Z ei(Bo+ B1Xi + &) = Z €i€;

= ZY%&' — Zﬁ'é‘z‘,

E(Yie;) = E(Bo+ B1Xi+e)ei = E(e?) = o2,
E(Yie) = E(Z kiiYi)ei = EkyYie; = kio?
=1

Note that k; = k; + X;k; and the properties of k; and k;, we can show
that E(s?) = ¢°
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\Normal Error Regression Model'

5/7; — BO + BlX’L + €19 E4 Niid N(07 0-2)

the random error term is assumed to be independent nor-
mally distributed

Defines distribution of random variable Y;

Y; ~ N(Bo + 1.X;,0°)

The normality assumption will greatly simplifies the theory
of analysis beyond estimations, allows us to construct confi-
dence intervals / perform hypothesis tests

Most inferences are only sensitive to large departures from
normality
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Sampling Distribution of b;’s

e Under the normality assumption, b7 also follows a normal
distribution since it is a linear combination of normal r.v.s.

e It is sufficient to figure the first two moments of bq:
E(b1) = Bi,

o2

_ 2 N —
Var(b1) = > kiVar(Y;) S (X~ X2

e | herefore

by ~ N(B1,0%/ Y (X; —X)?)
i=1

e by is also a linear combination of Y;'s, bg = Y. k;Y;, thus by
normal assumption, bg ~ N(E(bg), Var(bg)), where

E(bg) = Bo,

_ 1 X2
Var(by) = BPVar(Y;) = o2 | = .
ar(bo) = 2 KVar(Y) =% S X2 1o




t-test for Hy : B1 = 5(1)

b1—BY
se(by)’
an estimation for the \/Var(bl).

e Consider statistics where standard error of b7 means

o se(by) = \/SQ/Zyzl(Xi — X)2, that is to replace the unknown
o2 by its unbiased estimator s2 = MSE = Y.(Y;-Y;)2/(n—2),

e [ he test statistics is
b1 — B9 _ b1 — B¢
se(b1) \/32/ > (X — X)?

o (n—2)s?/0? ~ x2_, and s? is independent to by (will be

roved later), then b1~fy ~t
’ ' se(by) ~ =2
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t-test for Hq : 81 = BY

10
ttest statistics t* = 227°1 under level a
se(b1)

e Reject if |t*| > t(1 —a/2,n—2) or p-value P(|t,,—_2| > |t*]) < «

C.I for 34

b1 £t(1 —a/2,n — 2)se(by)

Similar inference for Jg.
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Comments

e \When errors not normal, procedures are generally reasonable
approximations

e Procedures can be modified for one-sided test / confidence
intervals

e [0 obtain an accurate interval estimation, at design stage,
choose X, such that

— S (X; —7)2 is large — smaller margin of error for (34

— Y (X; — X)? is large and |X]| is small — smaller margin of
error for g
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Interval Estimation of E(Yh)l

e Often interested in estimating the mean response for partic-
ular X;, i.e., the parameter of interests is E(Y}) = Bo+ 581 X},.

e Unbiased estimation is Y}, = bg + b1 .X},.

e Derive the sampling distribution of bg+b1 X}, in order to make
test and CL

— E(Y},) = Bo+ 81Xy

. %2 _ )2
— Var(y;) = o2 %—I— Z()&—XY))Q , se2(Y3) = s2 %—I— z(:)(()h(z—XY))Q :

— Test: (Y3, —null value)/se(Yy); CL: Vi +t(1—a/2,n—2)se(Y})
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Interval Prediction of Yh(new)l

e Predicting future observation Y} (,c.) = E[Y4] + € (new)

e The prediction interval for a unknown r.v., i.e., P(L < Yh (new) <
U)=1—-«

e Comparing with CI of E[Y,], one need to take account of
future error ep, ey

— E(bg + b1Xp) = E(Yh(new))

— Var(YVy(new) = bo + b1Xp) = 0 [1 Tt Z(?Q_—YY);]

2
— SGQ(Yh(new) —bo+ b1Xp) = 52 [1 + % + z(:)(()}éz_)%))Z]

— PIL: bg + b1 Xy, +¢(1 — a/2,n - 2)\/82 [1 + % T z(:)(()h(_—yy);]
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Confidence Band for Response Meansl

Consider the entire regression line

Want to define a likely region within which this unknown real
line lies

Rigorously, P(L(x) < Bg+ B1x < U(x) for all z) > 1 — «

One can show

bo + b1z — (Bo + B12)]°
se(Yy) (x)

m{gx ! ~ 2F2,n—2

Replace t(1—«a/2,n—2) with Working-Hotelling value in each
confidence interval

W =2F(1 —;2,n —2) = ¥}, £ W x se(¥},)

Boundary values define a hyperbola
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Confidence Band vs C.I. vs P.I.

hours
600 -

20 30 40 50 60 70 20 a0 100 110 120

e Blue — 95% confidence band; widest when X; — X is large
e Red — 95% confidence interval for the mean; always narrowest

e Green — 95_% confidence interval for the individual prediction; widest
when X; — X is small
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ANOVA approach

e Organizes results arithmetically

e [ he total sum of squares in Y is defined

SSTO =Y (V; - Y)?

e Can partition the total sum of squares into

— Model (explained by regression)

— Error (unexplained / residual)

D(Yi=Y)? = Y (Yi-Yi+¥i-Y)
= > (G -¥)?+ (V- Y)?
SSTO = SSE + SSR
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Sum of Squares

e Can also express

SSR S (¥ - Y)?
S (b + b1 X; — bg — b1 X)?

b7 (X; — X)?

e Degrees of freedom is 1 due to normality of by for some .
e SSR large when Y;'s are different from Y
e Error sum of squares is equal to the sum of squared residuals

SSE=3(Y; - ¥)? =} ¢f

e Degrees of freedom is n — 2 due to using (bg,by) in place of
(Bo,B1), and SSE ~ o2x2_,

e The MSE = SSE/(n—2) and represents an unbiased estimate
of 2 when taking X into account
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F Test

e Can use this structure to test Hg: 81 =0

e Consider
o MSR

~ MSE
e If 34 = 0, then F* should be near one, since both denominator

and numerator are of mean

Sigma,Q.

e Need sampling distribution of F* under Hpy to obtain p-value.

F*sim Fl,n—2
e When Hj is false, F'* tends to be large
e p-value = Pr(F(1,n —2) > F*)

e Reject when F* > Fy ,,_51_4, OF p-value < «
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General Linear Test|

A third way to test for linear association

Consider two models

— Full model: Y, = Bg + 61 X; + ¢;
— Reduced model: Y, = By + ¢;

Will compare models using SSE’s

— Error sum of squares of the full model will be labeled

SSE(F)

— Error sum of squares of the reduced model will be labeled

SSE(R)

Note: SSTO is the same under each model
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Reduced model corresponds to Hp: 31 =0
Can be shown that SSE(F) < SSE(R)
Idea: more parameters provide better fit

If SSE(F) is not much smaller than SSE(R), full model doesn't
better explain Y.

(SSE(R) — SSE(F))/(dfr — dfFr)
SSE(F)/dfF

(SSTO — SSE)/1

SSE(F)/(n —2)

F* =

Same test as before, but will have a more general use in
multiple regression
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Diagnosel

e use a residual plots (e; vs Y;) to check

— linearity
— constant variance

— never plot e; vs Y]

— normality

e Boxcox transformation
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Matrix Approachl

e Consider example with n =4

e Consider expressing observations:

e X is called the design matrix

Bo + B1X1
Bo + B1X>
Bo + B1X3
Bo + B1Xa

[ Bo + B1X1 ]
Bo + B1X>
Bo + B1X3

| Bo + B1X4 _

o e
>
N
1
™
o

+e1
+e2
+e3
+ea

€1

+ | =2

€3

| €4 ]

€1

+ | =2

€3

€4
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'Regression Matrices|

e Can express observations
Y= XB8 +e¢

e Both Y and € are random vectors

E(Y)= XB +E(e)
= X3
oc?(Y)= 0 Ho?(e)
= 21
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'Least Squares|

e EXpress quantity @

Q = (Y-XB)(Y-XpB)
= Y'Y - 3X'Y - Y'XB+ BX'X3
= Y'Y - 28X'Y + @X'X3
- (XB) = B'X’

e Taking derivative — —2X'Y 4+ 2X'X3 =0
- XY =X'Y
— ZB'X'XB = 2X'X3

e This means b = (X’X)"1X'Y
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Fitted Values|

The fitted values Y = Xb = X(X'X)1X'Y
Matrix H = X(X'X)~1X’ is called the hat matrix

— H is symmetric, i.e., H =H

— H is idempotent, i.e., HH=H
Equivalently write Y = HY

Matrix H used in diagnostics (Chapter 9)
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e Residual matrix

e ¢ iS a random vector

E(e)

o (e)

RCSidUE\lSI

Y-Y
Y - HY
(I-H)Y

(I—H) x E(Y)

(I-H)X3
XB—-XpB
o)

(I-H) xo?(Y) x I-H)
(I-H)s’I(I - HY
(I-H)o?
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Inference|

e Vector b = (X’X)"1X'Y = AY

e [ he mean and variance are

E(b) (X'X)"IX'E(Y)
(X'X)"1X'X3

B

o?(b) A xo?(Y) x A
A x o’T x A’
o?AA’

o2 (X'X) 1

e Thus, b is multivariate Normal(3, ¢2(X/X)~1)
o SSE=(e)(e)=Y'0I-H)Y ~o?x2_,

e Since b and (e) are indep, SSE and b are independent
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'Chapter Review]|

e Simple linear regression
e OLS estimation and prediction

e Inference and confidence band
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