Purdue-NCKU program

Lecture 6
 2^{k} Factorial Design

Dr. Qifan Song

2^{k} Factorial Design

- Involving k factors
- Each factor has two levels (often labeled + and -)
- Factor screening experiment (preliminary study)
- Factors need not be on numeric scale
- Identify important factors and their interactions
- Interaction (of any order) has ONE degree of freedom

2^{2} Factorial Design

Example:

factor						
A	B	treatment	1	2	3	mean
-	-	(1)	28	25	27	$80 / 3$
+	-	a	36	32	32	$100 / 3$
-	+	b	18	19	23	$60 / 3$
+	+	$a b$	31	30	29	$90 / 3$

- $y_{i j k}=\mu+\tau_{i}+\beta_{j}+(\tau \beta)_{i j}+\epsilon_{i j k}$
- Let $\bar{y}\left(A_{+}\right), \bar{y}\left(A_{-}\right), \bar{y}\left(B_{+}\right)$and $\bar{y}\left(B_{-}\right)$be the level means of A and B.
- Let $\bar{y}\left(A_{-} B_{-}\right), \bar{y}\left(A_{+} B_{-}\right), \bar{y}\left(A_{-} B_{+}\right)$and $\bar{y}\left(A_{+} B_{+}\right)$be the treatment means

Main Effect

Define main effects of A (denoted again by A) as follows:

$$
\begin{aligned}
& \quad A=m . e .(A)=\bar{y}\left(A_{+}\right)-\bar{y}\left(A_{-}\right) \\
& =\frac{1}{2}\left(\bar{y}\left(A_{+} B_{+}\right)+\bar{y}\left(A_{+} B_{-}\right)\right)-\frac{1}{2}\left(\bar{y}\left(A_{-} B_{+}\right)+\bar{y}\left(A_{-} B_{-}\right)\right) \\
& =\frac{1}{2}\left(\bar{y}\left(A_{+} B_{+}\right)+\bar{y}\left(A_{+} B_{-}\right)-\bar{y}\left(A_{-} B_{+}\right)-\bar{y}\left(A_{-} B_{-}\right)\right) \\
& =\frac{1}{2}\left(-\bar{y}\left(A_{-} B_{-}\right)+\bar{y}\left(A_{+} B_{-}\right)-\bar{y}\left(A_{-} B_{+}\right)+\bar{y}\left(A_{+} B_{+}\right)\right) \\
& =8.33
\end{aligned}
$$

- Let $C_{A}=(-1,1,-1,1)$, a contrast on treatment mean responses, then

$$
\text { m.e. }(A)=\frac{1}{2} \widehat{C}_{A}
$$

- Notice that

$$
A=m . e .(A)=\left(\bar{y}\left(A_{+}\right)-\bar{y}_{. .}\right)-\left(\bar{y}\left(A_{-}\right)-\bar{y}_{. .}\right)=\widehat{\tau}_{2}-\widehat{\tau}_{1}=2 \widehat{\tau}_{2}
$$

Main effect is defined in a different way than the factorial modeling. But they are connected and equivalent.

Interaction

- Interaction between A and B : does the effect of A depend on the level of B ?
- Define interaction between A and B

$$
\begin{aligned}
& \qquad A B=\operatorname{Int}(A B)=\frac{1}{2}\left(m . e .\left(A \mid B_{+}\right)-\text {m.e. }\left(A \mid B_{-}\right)\right) \\
& =\frac{1}{2}\left(\bar{y}\left(A_{+} \mid B_{+}\right)-\bar{y}\left(A_{-} \mid B_{+}\right)\right)-\frac{1}{2}\left(\bar{y}\left(A_{+} \mid B_{-}\right)-\bar{y}\left(A_{-} \mid B_{-}\right)\right) \\
& =\frac{1}{2}\left(\bar{y}\left(A_{-} B_{-}\right)-\bar{y}\left(A_{+} B_{-}\right)-\bar{y}\left(A_{-} B_{+}\right)+\bar{y}\left(A_{+} B_{+}\right)\right) \\
& \text {Let } C_{A B}=(1,-1,-1,1) \text {, a contrast on treatment means, } \\
& \text { then }
\end{aligned}
$$

$$
A B=\operatorname{Int}(A B)=\frac{1}{2} \widehat{C}_{A B}
$$

- Notice that $\operatorname{Int}(A B)=\tilde{\tau \beta}{ }_{22}-\tilde{\tau \beta} \beta_{21}=$ similar interaction factorial effects difference $=2 \widetilde{\tau \beta}{ }_{22}$

Effects and Contrasts

factor										effect					(contrast)
A	B	total	mean	I	A	B	AB								
-	-	80	$80 / 3$	1	-1	-1	1								
+	-	100	$100 / 3$	1	1	-1	-1								
-	+	60	$60 / 3$	1	-1	1	-1								
+	+	90	$90 / 3$	1	1	1	1								

- There is a one-to-one correspondence between effects and contrasts, and contrasts can be directly used to estimate the effects.
- For a effect corresponding to contrast $c=\left(c_{1}, c_{2}, \ldots\right)$ in 2^{2} design

$$
\text { effect }=\frac{1}{2} \sum_{i} c_{i} \bar{y}_{i}
$$

where i is an index for treatments and the summation is over all treatments.

- Pay attention to the column of the contrast matrix

2^{3} Factorial Design

factor						
A	B	C	treatment	1	2	total
-	-	-	(1)	-3	-1	-4
+	-	-	a	0	1	1
-	+	-	b	-1	0	-1
+	+	-	$a b$	2	3	5
-	-	+	c	-1	0	-1
+	-	+	ac	2	1	3
-	+	+	$b c$	1	1	2
+	+	+	$a b c$	6	5	11

$y_{i j k l}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+(\tau \beta)_{i j}+(\beta \gamma)_{j k}+(\tau \gamma)_{i k}+(\tau \beta \gamma)_{i j k}+\epsilon_{i j k l}$

factorial effects and contrasts

Main effects:

$$
\begin{aligned}
& \quad A=m . e .(A)=\bar{y}\left(A_{+}\right)-\bar{y}\left(A_{-}\right) \\
& =\frac{1}{4}(\bar{y}(---)+\bar{y}(+--)-\bar{y}(-+-)+\bar{y}(++-)-\bar{y}(--+) \\
& +\bar{y}(+-+)-\bar{y}(-++)+\bar{y}(+++)) \\
& =3.00=2 \bar{\tau}_{2}
\end{aligned}
$$

The contrast is ($-1,1,-1,1,-1,1,-1,1$)
$B:(-1,-1,1,1,-1,-1,1,1), B=2.25$
$C:(-1,-1,-1,-1,1,1,1,1), C=1.75$
2-factor interactions:
$A B: A \times B$ componentwise, $\mathrm{AB}=.75=\tilde{\tau} \beta_{22}$
$A C: A \times C$ componentwise, $\mathrm{AC}=.25$
$B C: B \times C$ componentwise, $\mathrm{BC}=.50$

High order interaction

k-th order interaction means: does the $(k-1)$-th interaction depend on level of the k-th factor

3-factor interaction:

$$
\begin{aligned}
& \quad A B C=\operatorname{int}(A B C)=\frac{1}{2}(\operatorname{int}(A B \mid C+)-\operatorname{int}(A B \mid C-)) \\
& =\frac{1}{4}(-\bar{y}(---)+\bar{y}(+--)+\bar{y}(-+-)-\bar{y}(++-) \\
& +\bar{y}(--+)-\bar{y}(+-+)-\bar{y}(-++)+\bar{y}(+++)) \\
& =.50=2 \tau \widehat{\beta} \gamma_{222}
\end{aligned}
$$

The contrast is $(-1,1,1,-1,1,-1,-1,1)=A \times B \times C$.

Contrasts for Calculating Effects in 2^{3} Design

		factorial effects									
A	B	C	treatment	I	A	B	$A B$	C	$A C$	$B C$	$A B C$
-	-	-	(1)	1	-1	-1	1	-1	1	1	-1
+	-	-	a	1	1	-1	-1	-1	-1	1	1
-	+	-	b	1	-1	1	-1	-1	1	-1	1
+	+	-	ab	1	1	1	1	-1	-1	-1	-1
-	-	+	c	1	-1	-1	1	1	-1	-1	1
+	-	+	ac	1	1	-1	-1	1	1	-1	-1
-	+	+	bc	1	-1	1	-1	1	-1	1	-1
+	+	+	abc	1	1	1	1	1	1	1	1

Estimates:

$$
\begin{aligned}
& \text { grand mean: } \frac{\sum \bar{y}_{i .}}{2^{3}} \\
& \text { effect }: \frac{\sum c_{i} \bar{y}_{i .}}{2^{3-1}}
\end{aligned}
$$

General 2^{k} Design

- k factors: A, B, \ldots, K each with 2 levels (+,-)
- consists of all possible level combinations (2^{k} treatments) each with n replicates
- Classify factorial effects:

type of effect	label	the number of effects
main effects (of order 1)	A, B, C, \ldots, K	k
2-factor interactions (of order 2)	$A B, A C, \ldots, J K$	$\binom{k}{2}$
3-factor interactions (of order 3)	$A B C, A B D, \ldots, I J K$	$\binom{k}{3}$
k-factor interaction (of order k)	$A B C \cdots K$	$\binom{\cdots}{k}$

- Each effect (main or interaction) has 1 degree of freedom full model (i.e. model consisting of all the effects) has $2^{k}-1$ degrees of freedom.
- Error component has $2^{k}(n-1)$ degrees of freedom.
- One-to-one correspondence between effects and contrasts:
- For main effect: convert the level column of a factor using $-\Rightarrow-1$ and $+\Rightarrow 1$
- For interactions: multiply the contrasts of the main effects of the involved factors, componentwisely.

General 2^{k} Design: Analysis

- Estimates:

$$
\text { grand mean }: \frac{\sum \bar{y}_{i .}}{2^{k}}
$$

For effect with contrast $C=\left(c_{1}, c_{2}, \ldots, c_{2^{k}}\right)$, its estimate is

$$
\text { effect }=\frac{\sum c_{i} \bar{y}_{i}}{2^{(k-1)}}
$$

- Variance

$$
\begin{aligned}
& \operatorname{Var}(\text { effect })=\frac{\sigma^{2}}{n 2^{k-2}} \\
& \text { S.E.(effect) }=\frac{M S E}{n 2^{k-2}}
\end{aligned}
$$

- C.I. for every factorial effect

$$
\text { effect } \pm t_{\alpha / 2,2^{k}(n-1)} \text { S.E.(effect) }
$$

Unreplicated 2^{k} Design

- $n=1$
- No degree of freedom left for error component if full model is fitted.
- Same estimation method
- No error sum of squares available, cannot estimate σ^{2} and test effects in both the ANOVA and Regression approaches.
- Approach 1: pooling high-order interactions
- Often assume 3 or higher interactions do not occur
- Pool estimates together for error
- Warning: may pool significant interaction
- Approach 2: Using the normal probability plot (QQ plot) to identify significant effects.
- Recall

$$
\operatorname{Var}(\mathrm{effect})=\frac{\sigma^{2}}{2^{(k-2)}}
$$

If the effect is not significant $(=0)$, then the effect estimate follows $N\left(0, \frac{\sigma^{2}}{2^{(k-2)}}\right)$

- Assume all effects not significant, their estimates can be considered as a random sample from $N\left(0, \frac{\sigma^{2}}{2^{(k-2)}}\right)$
- QQ plot of the estimates is expected to be a linear line
- Deviation from a linear line indicates significant effects

A case study

factor				
A	B	C	D	filtration
-	-	-	-	45
+	-	-	-	71
-	+	-	-	48
+	+	-	-	65
-	-	+	-	68
+	-	+	-	60
-	+	+	-	80
+	+	+	-	65
-	-	-	+	43
+	-	-	+	100
-	+	-	+	45
+	+	-	+	104
-	-	+	+	75
+	-	+	+	86
-	+	+	+	70
+	+	+	+	96

ALL Ranked Effects

Obs	_-NAME_	COL1	effect	neff
1	AC	-9.0625	-18.125	-1.73938
2	BCD	-1.3125	-2.625	-1.24505
3	ACD	-0.8125	-1.625	-0.94578
4	CD	-0.5625	-1.125	-0.71370
5	BD	-0.1875	-0.375	-0.51499
6	AB	0.0625	0.125	-0.33489
7	ABCD	0.6875	1.375	-0.16512
8	ABC	0.9375	1.875	-0.00000
9	BC	1.1875	2.375	0.16512
10	B	1.5625	3.125	0.33489
11	ABD	2.0625	4.125	0.51499
12	C	4.9375	9.875	0.71370
13	D	7.3125	14.625	0.94578
14	AD	8.3125	16.625	1.24505
15	A	10.8125	21.625	1.73938

Effect Selection and Analysis

- Potentially significant effects: $A, A D, C, D, A C$.
- ANOVA model involving only A, C, D and their interactions (projecting the original unreplicated 2^{4} experiment onto a replicated 2^{3} experiment)
- Make inferences with non-ZERO MSE
- Diagnostics using residuals.

2^{k-p} Fractional Factorial Design

Fundamental Principles Regarding Factorial Effects

Suppose there are k factors (A, B, \ldots, J, K) in an experiment. All possible factorial effects include
effects of order 1: A, B, \ldots, K (main effects)
effects of order 2: $A B, A C, \ldots, J K$ (2-factor interactions)

- Hierarchical Ordering principle
- Lower order effects are more likely to be important than higher order effects.
- Effects of the same order are equally likely to be important
- Effect Sparsity Principle (Pareto principle)
- The number of relatively important effects in a factorial experiment is small
- Effect Heredity Principle
- In order for an interaction to be significant, at least one of its parent factors should be significant.

Fractional Factorials

- May not have sources (time,money,etc) for full factorial design
- Number of runs required for full factorial grows quickly
- Consider 2^{k} design
- If $k=7 \rightarrow 128$ runs required
- Can estimate 127 effects
- Only 7 df for main effects, 21 for 2-factor interactions
- the remaining 99 df are for interactions of order ≥ 3
- Often only lower order effects are important
- Full factorial design may not be necessary according to
- Hierarchical ordering principle
- Effect Sparsity Principle
- A fraction of the full factorial design (i.e. a subset of all possible level combinations) is sufficient.

There are four factors in the experiment $(A, B, C$ and $D)$, each of 2 levels. Suppose the available resource is enough for conducting 8 runs. 2^{4} full factorial design consists of all the 16 level combinations of the four factors. We need to choose half of them.

- If you drop one factors for a 2^{3} full factorial design, this factor and their interactions with other factors cannot be investigated.
- Want investigate all 4 factors in the experiment
- A fraction of 2^{4} full factorial design will be used.
- Confounding (aliasing) will happen because using a subset

The chosen half is called 2^{4-1} fractional factorial design.

2^{4-1} Fractional Factorial Design

- the number of factors: $k=4$
- the fraction index: $p=1$
- the number of runs (level combinations): $N=\frac{2^{4}}{2^{1}}=8$
- Construct 2^{4-1} designs via "confounding" (aliasing)
- select 3 factors (e.g. A, B, C) to form a 2^{3} full factorial (basic design)
- confound (alias) D with a high order interaction of A, B and C. For example,

$$
D=A B C
$$

factorial effects (contrasts)							
I	A	B	C	AB	AC	BC	ABC $=$ D
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1	1	-1	-1	1	-1
1	1	1	1	1	1	1	1

- Note: 1 corresponds to + and -1 corresponds to -.

Verify:

1. the chosen level combinations form a half of the 2^{4} design.
2. the product of columns A, B, C and D equals 1, i.e.,

$$
I=A B C D
$$

which is called the defining relation, or $A B C D$ is called a defining word (contrast).

Aliasing in 2^{4-1} Design

For four factors A, B, C and D, there are $2^{4}-1$ effects: $A, B, C, D, A B$, $A C, A D, B C, B D, C D, A B C, A B D, A C D, B C D, A B C D$

Response	I	A	B	C	D	AB	..	CD	ABC	BCD	\ldots
ABCD											
y_{1}	1	-1	-1	-1	-1	1	..	1	-1	-1	\ldots
y_{2}	1	1	-1	-1	1	-1	..	-1	1	1	\ldots
y_{3}	1	-1	1	-1	1	-1	..	-1	1	-1	\ldots
y_{4}	1	1	1	-1	-1	1	..	1	-1	1	\ldots
y_{5}	1	-1	-1	1	1	1	..	1	1	-1	\ldots
y_{6}	1	1	-1	1	-1	-1	..	-1	-1	1	\ldots
y_{7}	1	-1	1	1	-1	-1	..	-1	-1	-1	\ldots
y_{8}	1	1	1	1	1	1	..	1	1	1	\ldots

Contrasts for main effects by converting - to -1 and + to 1 ; contrasts for other effects obtained by multiplication.

$$
\begin{aligned}
& A=\bar{y}_{A+}-\bar{y}_{A-}=\frac{1}{4}\left(-y_{1}+y_{2}-y_{3}+y_{4}-y_{5}+y_{6}-y_{7}+y_{8}\right) \\
& B C D=\frac{1}{4}\left(-y_{1}+y_{2}-y_{3}+y_{4}-y_{5}+y_{6}-y_{7}+y_{8}\right)
\end{aligned}
$$

$A, B C D$ are aliases or aliased. The contrast is for $A+B C D$. A and $B C D$ are not distinguishable.

$$
\begin{aligned}
& A B=\bar{y}_{A B+}-\bar{y}_{A B-}=\frac{1}{4}\left(y_{1}-y_{2}-y_{3}+y_{4}+y_{5}-y_{6}-y_{7}+y_{8}\right) C D=\bar{y}_{C D+}-\bar{y}_{C D-}= \\
& \frac{1}{4}\left(y_{1}-y_{2}-y_{3}+y_{4}+y_{5}-y_{6}-y_{7}+y_{8}\right)
\end{aligned}
$$

$A B, C D$ are aliases or aliased. The contrast is for $A B+C D . A B$ and $C D$ are not distinguishable.

There are other 5 pairs. They are caused by the defining relation

$$
I=A B C D,
$$

that is, I (the intercept) and 4-factor interaction $A B C D$ are aliased.

Alias Structure for 2^{4-1} with $I=A B C D$

- Alias Structure:
$I=A B C D$
$A=A * I=A * A B C D=B C D$
$B=\ldots \ldots \ldots . .=A C D$
$C=\ldots \ldots \ldots .=A B D$
$D=\ldots \ldots \ldots \ldots=A B C$
$A B=A B * I=A B * A B C D=C D$
$A C=\ldots \ldots \ldots \ldots .=B D$
$A D=\ldots \ldots \ldots \ldots . .=B C$
- all 16 factorial effects for A, B, C and D are partitioned into 8 groups each with 2 aliased effects.
- When a low order effect is aliased with a high order effect, by Hierarchical Order principle, we tend to believe that the effect is mostly contributed by the low order effect

A Different 2^{4-1} Design

- the defining relation $I=A B D$ generates another 2^{4-1} fractional factorial design, denoted by d_{2}. Its alias structure is given below.
$I=A B D$
$A=B D$
$B=A D$
$C=A B C D$
$D=A B$
$A B C=C D$
$A C D=B C$
$B C D=A C$
- Recall d_{1} is defined by $I=A B C D$. Comparing d_{1} and d_{2}, which one we should choose or which one is better?

1. Length of a defining word is defined to be the number of the involved factors.
2. Resolution of a fractioanl factorial design is defined to be the minimum length of the defining words, usually denoted by Roman numbers, III, IV, V, etc...

Resolution and Maximum Resolution Criterion

- $d_{1}: I=A B C D$ is a resolution IV design denoted by 2_{IV}^{4-1}.
- $d_{2}: I=A B D$ is a resolution III design denoted by $2_{\text {III }}^{4-1}$.
- If a design is of resolution R , then none of the i-factor interactions is aliased with any other interaction of order less than $R-i$.
d_{1} : main effects are not aliased with other main effects and 2-factor interactions
d_{2} : main effects are not aliased with main effects
- d_{1} is better, because d_{1} has higher resolution than d_{2}. In fact, d_{1} is optimal among all the possible fractional factorial 2^{4-1} designs
- Maximum Resolution Criterion
fractional factorial design with maximum resolution is optimal

How to Analyze 2^{4-1} design

- Compute all effects
- Use QQ plot to determine which ones are significant
- Resolve the ambiguities in aliased effects via the fundamental principles beneficial
- Project the design to a replicated factorial design
- Example
$-\mathrm{I}=\mathrm{ABCD}$
- QQ plot determine A, B, CD are significant
- By HO principle C, D are not significant
- By EH principle, CD are not significant
- All significant effects are A, B and $A B$
- View the data as a 2^{2} experiment with 2 replications

General 2^{k-1} Design

- k factors: A, B, \ldots, K
- can only afford half of all the combinations (2^{k-1})
- Basic design: a 2^{k-1} full factorial for $k-1$ factors: A, B, \ldots, J.
- The setting of k th factor is determined by alasing K with the $A B C \ldots . . . J$, i.e., $K=A B C \cdots J$
- Defining relation: $I=A B C D$....ĨJK. Resolution=k
- 2^{k} factorial effects are partitioned into 2^{k-1} groups each with two aliased effects.
- Use fundamental principles, domain knowledge, follow-up experiment to de-alias.

One Quarter Fraction: 2^{k-2} Design

Parts manufactured in an injection molding process are showing excessive shrinkage. A quality improvement team has decided to use a designed experiment to study the injection molding process so that shrinkage can be reduced.
The team decides to investigate six factors
A : mold temperature
B : screw speed
C : holding time
D : cycle time
E : gate size
F : holding pressure
each at two levels, with the objective of learning about main effects and interactions.
They decide to use 16-run fractional factorial design.

- a full factorial has $2^{6}=64$ runs.
- 16-run is one quarter of the full factorial
- How to construct the fraction?

Injection Molding Experiment: 2^{6-2} Design

basic design						
A	B	C	D	$E=A B C$	$F=B C D$	shrinkage
-	-	-	-	-	-	6
+	-	-	-	+	-	10
-	+	-	-	+	+	32
+	+	-	-	-	+	60
-	-	+	-	+	+	4
+	-	+	-	-	+	15
-	+	+	-	-	-	26
+	+	+	-	+	-	60
-	-	-	+	-	+	8
+	-	-	+	+	+	12
-	+	-	+	+	-	34
+	+	-	+	-	-	60
-	-	+	+	+	-	16
+	-	+	+	-	-	5
-	+	+	+	-	+	37
+	+	+	+	+	+	52

Two defining relations are used to generate the columns for E and F.

$$
I=A B C E, \text { and } I=B C D F
$$

They induce another defining relation:

$$
I=A B C E * B C D F=A B^{2} C^{2} D E F=A D E F
$$

The complete defining relation:

$$
I=A B C E=B C D F=A D E F
$$

Defining contrasts subgroup: $\{I, A B C E, B C D F, A D E F\}$

Alias Structure

$I=A B C E=B C D F=A D E F$ implies

$$
A=B C E=A B C D F=D E F
$$

Similarly, we can derive the other groups of aliased effects.

$$
\begin{array}{ll}
\hline A=B C E=D E F=A B C D F & A B=C E=A C D F=B D E F \\
B=A C E=C D F=A B D E F & A C=B E=A B D F=C D E F \\
C=A B E=B D F=A C D E F & A D=E F=B C D E=A B C F \\
D=B C F=A E F=A B C D E & A E=B C=D F=A B C D E F \\
E=A B C=A D F=B C D E F & A F=D E=B C E F=A B C D \\
F=B C D=A D E=A B C E F & B D=C F=A C D E=A B E F \\
& B F=C D=A C E F=A B D E \\
A B D=C D E=A C F=B E F & \\
A C D=B D E=A B F=C E F & \\
\hline
\end{array}
$$

Wordlength pattern $W=\left(W_{0}, W_{1}, \ldots, W_{6}\right)$, where W_{i} is the number of defining words of length i (i.e., involving i factors)

$$
W=(1,0,0,0,3,0,0)
$$

Resolution is the smallest i such that $i>0$ and $W_{i}>0$. Hence it is a 2 IV ${ }^{6-2}$ design

2^{6-2} Design: an Alternative

- Basic Design: A, B, C, D
- $E=A B C D, F=A B C$, i.e., $I=A B C D E$, and $I=A B C F$
- which induces: $I=D E F$
- complete defining relation: $I=A B C D E=A B C F=D E F$
- wordlength pattern: $W=(1,0,0,1,1,1,0)$
- Alias structure (ignore effects of order 3 or higher)

$A=.$.	$A B=C F=.$.
$B=$.	$A C=B F=.$.
$C=$.	$A D=.$.
$D=E F=.$.	$A E=.$.
$E=D F=$.	$A F=B C=.$.
$F=D E=.$.	$B D=.$.
	$B E=.$.
	$C D=.$.
	$C E=.$.

- an effect is said to be clearly estimable if it is not aliased with main effect or two-factor interactions.
- Which design is better d_{1} or d_{2} ? d_{1} has six clearly estimable main effects while d_{2} has three clearly estimable main effects and six clearly estimable two-factor ints.

Minimum Aberration Criterion

Recall 2^{k-p} with maximum resolution should be preferred. But, it is possible that there are two designs that attain the maximum resolution. How should we further distinguish them?

For example, consider 2^{7-2} fractional factorial design
d_{1} : basic design: $A, B, C, D, E ; \quad F=A B C, G=A B D E$
complete defining relation: $I=A B C F=A B D E G=C D E F G$
wordlength pattern: $W=(1,0,0,0,1,2,0,0)$
Resolution: IV
d_{2} : basic design: $A, B, C, D, E ; \quad F=A B C, G=A D E$
complete defining relation: $I=A B C F=A D E G=B C D E F G$
wordlength pattern: $W=(1,0,0,0,2,0,1,0)$
Resolution: IV
d_{1} and d_{2}, which is better?

Minimum Aberration Criterion

Definition: Let d_{1} and d_{2} be two 2^{k-p} designs, let r be the smallest positive integer such that $W_{r}\left(d_{1}\right) \neq W_{r}\left(d_{2}\right)$.
If $W_{r}\left(d_{1}\right)<W_{r}\left(d_{2}\right)$, then d_{1} is said to have less aberration than d_{2}.
If there does not exist any other design that has less aberration than d_{1}, then d_{1} has minimum aberration.

Chapter Review

- 2^{k} design
- 2^{k} design without replication
- 2^{k-p} design

