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2k Factorial Design

• Involving k factors

• Each factor has two levels (often labeled + and −)

• Factor screening experiment (preliminary study)

• Factors need not be on numeric scale

• Identify important factors and their interactions

• Interaction (of any order) has ONE degree of freedom
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22 Factorial Design

Example:

factor replicate
A B treatment 1 2 3 mean
− − (1) 28 25 27 80/3
+ − a 36 32 32 100/3
− + b 18 19 23 60/3
+ + ab 31 30 29 90/3

• yijk = µ+ τi + βj + (τβ)ij + ϵijk

• Let ȳ(A+), ȳ(A−), ȳ(B+) and ȳ(B−) be the level means of

A and B.

• Let ȳ(A−B−), ȳ(A+B−), ȳ(A−B+) and ȳ(A+B+) be the treat-

ment means
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Main Effect

Define main effects of A (denoted again by A ) as follows:

A = m.e.(A) = ȳ(A+)− ȳ(A−)

= 1
2(ȳ(A+B+) + ȳ(A+B−))− 1

2(ȳ(A−B+) + ȳ(A−B−))
= 1

2(ȳ(A+B+) + ȳ(A+B−)− ȳ(A−B+)− ȳ(A−B−))
= 1

2(−ȳ(A−B−) + ȳ(A+B−)− ȳ(A−B+) + ȳ(A+B+))

=8.33

• Let CA=(-1,1,-1,1), a contrast on treatment mean responses,

then

m.e.(A)=1
2ĈA

• Notice that

A = m.e.(A) = (ȳ(A+)− ȳ..)− (ȳ(A−)− ȳ..) = τ̂2 − τ̂1 = 2τ̂2

Main effect is defined in a different way than the factorial

modeling. But they are connected and equivalent.
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Interaction

• Interaction between A and B: does the effect of A depend

on the level of B?

• Define interaction between A and B

AB = Int(AB) =
1

2
(m.e.(A | B+)−m.e.(A | B−))

=
1

2
(ȳ(A+ | B+)− ȳ(A− | B+))−

1

2
(ȳ(A+ | B−)− ȳ(A− | B−))

= 1
2(ȳ(A−B−)− ȳ(A+B−)− ȳ(A−B+) + ȳ(A+B+))

Let CAB = (1,−1,−1,1), a contrast on treatment means,

then

AB=Int(AB)=1
2ĈAB

• Notice that Int(AB) = τ̂β22− τ̂β21 = similar interaction fac-

torial effects difference =2τ̂β22
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Effects and Contrasts

factor effect (contrast)
A B total mean I A B AB
− − 80 80/3 1 -1 -1 1
+ − 100 100/3 1 1 -1 -1
− + 60 60/3 1 -1 1 -1
+ + 90 90/3 1 1 1 1

• There is a one-to-one correspondence between effects and
contrasts, and contrasts can be directly used to estimate the
effects.

• For a effect corresponding to contrast c = (c1, c2, . . .) in 22

design

effect =
1

2

∑
i

ciȳi

where i is an index for treatments and the summation is over
all treatments.

• Pay attention to the column of the contrast matrix
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23 Factorial Design

factor response
A B C treatment 1 2 total
− − − (1) -3 -1 -4
+ − − a 0 1 1
− + − b -1 0 -1
+ + − ab 2 3 5
− − + c -1 0 -1
+ − + ac 2 1 3
− + + bc 1 1 2
+ + + abc 6 5 11

yijkl = µ+ τi+βj+γk+(τβ)ij+(βγ)jk+(τγ)ik+(τβγ)ijk+ ϵijkl
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factorial effects and contrasts

Main effects:

A = m.e.(A) = ȳ(A+)− ȳ(A−)

= 1
4(ȳ(−−−) + ȳ(+−−)− ȳ(−+−) + ȳ(++−)− ȳ(−−+)

+ȳ(+−+)− ȳ(−++)+ ȳ(+++))

=3.00= 2τ̂2
The contrast is (-1,1,-1,1,-1,1,-1,1)

B : (−1,−1,1,1,−1,−1,1,1), B = 2.25

C : (−1,−1,−1,−1,1,1,1,1), C = 1.75

2-factor interactions:

AB: A×B componentwise, AB=.75=τ̂β22

AC: A× C componentwise, AC=.25

BC: B × C componentwise, BC=.50
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High order interaction

k-th order interaction means: does the (k − 1)-th interaction

depend on level of the k-th factor

3-factor interaction:

ABC = int(ABC) =
1

2
(int(AB | C+)− int(AB | C−))

= 1
4(−ȳ(−−−) + ȳ(+−−) + ȳ(−+−)− ȳ(++−)

+ȳ(−−+)− ȳ(+−+)− ȳ(−++)+ ȳ(+++))

=.50=2 ˆτβγ222

The contrast is (-1,1,1,-1,1,-1,-1,1)= A×B × C.
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Contrasts for Calculating Effects in 23 Design

factorial effects
A B C treatment I A B AB C AC BC ABC
− − − (1) 1 -1 -1 1 -1 1 1 -1
+ − − a 1 1 -1 -1 -1 -1 1 1
− + − b 1 -1 1 -1 -1 1 -1 1
+ + − ab 1 1 1 1 -1 -1 -1 -1
− − + c 1 -1 -1 1 1 -1 -1 1
+ − + ac 1 1 -1 -1 1 1 -1 -1
− + + bc 1 -1 1 -1 1 -1 1 -1
+ + + abc 1 1 1 1 1 1 1 1

Estimates:

grand mean:

∑
ȳi.

23

effect :

∑
ciȳi.

23−1
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General 2k Design

• k factors: A, B, . . ., K each with 2 levels (+,−)

• consists of all possible level combinations (2k treatments) each with n
replicates

• Classify factorial effects:

type of effect label the number
of effects

main effects (of order 1) A, B, C, . . ., K k

2-factor interactions (of order 2) AB, AC, . . ., JK

(
k
2

)
3-factor interactions (of order 3) ABC,ABD,. . .,IJK

(
k
3

)
. . . . . . . . .

k-factor interaction (of order k) ABC · · ·K
(

k
k

)
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• Each effect (main or interaction) has 1 degree of freedom

full model (i.e. model consisting of all the effects) has 2k−1

degrees of freedom.

• Error component has 2k(n− 1) degrees of freedom.

• One-to-one correspondence between effects and contrasts:

– For main effect: convert the level column of a factor using

− ⇒ −1 and + ⇒ 1

– For interactions: multiply the contrasts of the main effects

of the involved factors, componentwisely.
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General 2k Design: Analysis

• Estimates:

grand mean :

∑
ȳi.

2k

For effect with contrast C = (c1, c2, . . . , c2k), its estimate is

effect =

∑
ciȳi

2(k−1)

• Variance

Var(effect) =
σ2

n2k−2

S.E.(effect) =
MSE

n2k−2

• C.I. for every factorial effect

effect± tα/2,2k(n−1)S.E.(effect)
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Unreplicated 2k Design

• n = 1

• No degree of freedom left for error component if full model

is fitted.

• Same estimation method

• No error sum of squares available, cannot estimate σ2 and

test effects in both the ANOVA and Regression approaches.

• Approach 1: pooling high-order interactions

– Often assume 3 or higher interactions do not occur

– Pool estimates together for error

– Warning: may pool significant interaction
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• Approach 2: Using the normal probability plot (QQ plot) to

identify significant effects.

– Recall

Var(effect) =
σ2

2(k−2)

If the effect is not significant (=0), then the effect esti-

mate follows N(0, σ2

2(k−2))

– Assume all effects not significant, their estimates can be

considered as a random sample from N(0, σ2

2(k−2))

– QQ plot of the estimates is expected to be a linear line

– Deviation from a linear line indicates significant effects
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A case study

factor
A B C D filtration
− − − − 45
+ − − − 71
− + − − 48
+ + − − 65
− − + − 68
+ − + − 60
− + + − 80
+ + + − 65
− − − + 43
+ − − + 100
− + − + 45
+ + − + 104
− − + + 75
+ − + + 86
− + + + 70
+ + + + 96
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ALL Ranked Effects

Obs _NAME_ COL1 effect neff
1 AC -9.0625 -18.125 -1.73938
2 BCD -1.3125 -2.625 -1.24505
3 ACD -0.8125 -1.625 -0.94578
4 CD -0.5625 -1.125 -0.71370
5 BD -0.1875 -0.375 -0.51499
6 AB 0.0625 0.125 -0.33489
7 ABCD 0.6875 1.375 -0.16512
8 ABC 0.9375 1.875 -0.00000
9 BC 1.1875 2.375 0.16512
10 B 1.5625 3.125 0.33489
11 ABD 2.0625 4.125 0.51499
12 C 4.9375 9.875 0.71370
13 D 7.3125 14.625 0.94578
14 AD 8.3125 16.625 1.24505
15 A 10.8125 21.625 1.73938
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Effect Selection and Analysis

• Potentially significant effects: A,AD,C,D,AC.

• ANOVA model involving only A, C, D and their interactions

(projecting the original unreplicated 24 experiment onto a

replicated 23 experiment)

• Make inferences with non-ZERO MSE

• Diagnostics using residuals.
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2k−p Fractional Factorial Design

Fundamental Principles Regarding Factorial Effects

Suppose there are k factors (A,B,...,J,K) in an experiment. All possible fac-
torial effects include

effects of order 1: A, B, ..., K (main effects)

effects of order 2: AB, AC, ....,JK (2-factor interactions)

.................

• Hierarchical Ordering principle

– Lower order effects are more likely to be important than higher order
effects.

– Effects of the same order are equally likely to be important

• Effect Sparsity Principle (Pareto principle)

– The number of relatively important effects in a factorial experiment
is small

• Effect Heredity Principle

– In order for an interaction to be significant, at least one of its parent
factors should be significant.
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Fractional Factorials

• May not have sources (time,money,etc) for full factorial design

• Number of runs required for full factorial grows quickly

– Consider 2k design

– If k = 7 → 128 runs required

– Can estimate 127 effects

– Only 7 df for main effects, 21 for 2-factor interactions

– the remaining 99 df are for interactions of order ≥ 3

• Often only lower order effects are important

• Full factorial design may not be necessary according to

– Hierarchical ordering principle

– Effect Sparsity Principle

• A fraction of the full factorial design ( i.e. a subset of all possible level
combinations) is sufficient.
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There are four factors in the experiment(A, B, C and D), each of 2 levels.
Suppose the available resource is enough for conducting 8 runs. 24 full fac-
torial design consists of all the 16 level combinations of the four factors. We
need to choose half of them.

• If you drop one factors for a 23 full factorial design, this factor and their
interactions with other factors cannot be investigated.

• Want investigate all 4 factors in the experiment

• A fraction of 24 full factorial design will be used.

• Confounding (aliasing) will happen because using a subset

The chosen half is called 24−1 fractional factorial design.
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24−1 Fractional Factorial Design

• the number of factors: k = 4

• the fraction index: p = 1

• the number of runs (level combinations): N = 24

21 = 8

• Construct 24−1 designs via “confounding” (aliasing)

– select 3 factors (e.g. A, B, C) to form a 23 full factorial (basic design)

– confound (alias) D with a high order interaction of A, B and C. For
example,

D = ABC

factorial effects (contrasts)
I A B C AB AC BC ABC=D
1 -1 -1 -1 1 1 1 -1
1 1 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1
1 1 1 -1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 -1 1 -1 1 -1 -1
1 -1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1

• Note: 1 corresponds to + and −1 corresponds to −.
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Verify:
1. the chosen level combinations form a half of the 24 design.

2. the product of columns A, B, C and D equals 1, i.e.,

I = ABCD

which is called the defining relation, or ABCD is called a defining word
(contrast).



Aliasing in 24−1 Design

For four factors A, B, C and D, there are 24 − 1 effects: A, B, C, D, AB,
AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD

Response I A B C D AB .. CD ABC BCD ... ABCD
y1 1 -1 -1 -1 -1 1 .. 1 -1 -1 ... 1
y2 1 1 -1 -1 1 -1 .. -1 1 1 ... 1
y3 1 -1 1 -1 1 -1 .. -1 1 -1 ... 1
y4 1 1 1 -1 -1 1 .. 1 -1 1 ... 1
y5 1 -1 -1 1 1 1 .. 1 1 -1 ... 1
y6 1 1 -1 1 -1 -1 .. -1 -1 1 ... 1
y7 1 -1 1 1 -1 -1 .. -1 -1 -1 ... 1
y8 1 1 1 1 1 1 .. 1 1 1 ... 1

Contrasts for main effects by converting − to -1 and + to 1; contrasts for
other effects obtained by multiplication.

A = ȳA+ − ȳA− = 1
4
(−y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8)

BCD = 1
4
(−y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8)

A, BCD are aliases or aliased. The contrast is for A+BCD. A and BCD
are not distinguishable.

AB = ȳAB+− ȳAB− = 1
4
(y1−y2−y3+y4+y5−y6−y7+y8) CD = ȳCD+− ȳCD− =

1
4
(y1 − y2 − y3 + y4 + y5 − y6 − y7 + y8)
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AB, CD are aliases or aliased. The contrast is for AB+CD. AB and CD
are not distinguishable.

There are other 5 pairs. They are caused by the defining relation

I = ABCD,

that is, I (the intercept) and 4-factor interaction ABCD are aliased.



Alias Structure for 24−1 with I = ABCD

• Alias Structure:
I = ABCD
A = A ∗ I = A ∗ABCD = BCD
B = .......... = ACD
C = .......... = ABD
D = .......... = ABC
AB = AB ∗ I = AB ∗ABCD = CD
AC = ............ = BD
AD = ............ = BC

• all 16 factorial effects for A, B, C and D are partitioned into 8 groups
each with 2 aliased effects.

• When a low order effect is aliased with a high order effect, by Hierarchical
Order principle, we tend to believe that the effect is mostly contributed
by the low order effect
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A Different 24−1 Design

• the defining relation I = ABD generates another 24−1 fractional factorial
design, denoted by d2. Its alias structure is given below.
I = ABD
A = BD
B = AD
C = ABCD
D = AB
ABC = CD
ACD = BC
BCD = AC

• Recall d1 is defined by I = ABCD. Comparing d1 and d2, which one we
should choose or which one is better?

1. Length of a defining word is defined to be the number of the involved
factors.

2. Resolution of a fractioanl factorial design is defined to be the mini-
mum length of the defining words, usually denoted by Roman numbers,
III, IV, V, etc...
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Resolution and Maximum Resolution Criterion

• d1: I = ABCD is a resolution IV design denoted by 24−1
IV .

• d2: I = ABD is a resolution III design denoted by 24−1
III .

• If a design is of resolution R, then none of the i-factor in-

teractions is aliased with any other interaction of order less

than R− i.

d1: main effects are not aliased with other main effects and

2-factor interactions

d2: main effects are not aliased with main effects

• d1 is better, because d1 has higher resolution than d2. In

fact, d1 is optimal among all the possible fractional factorial

24−1 designs

• Maximum Resolution Criterion

fractional factorial design with maximum resolution is optimal
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How to Analyze 24−1 design

• Compute all effects

• Use QQ plot to determine which ones are significant

• Resolve the ambiguities in aliased effects via the fundamental

principles beneficial

• Project the design to a replicated factorial design

• Example

– I=ABCD

– QQ plot determine A, B, CD are significant

– By HO principle C, D are not significant

– By EH principle, CD are not significant

– All significant effects are A, B and AB

– View the data as a 22 experiment with 2 replications
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General 2k−1 Design

• k factors: A, B, . . ., K

• can only afford half of all the combinations (2k−1)

• Basic design: a 2k−1 full factorial for k − 1 factors: A, B, . . ., J.

• The setting of kth factor is determined by alasing K with the ABC....J,
i.e., K = ABC · · · J

• Defining relation: I = ABCD....ĨJK. Resolution=k

• 2k factorial effects are partitioned into 2k−1 groups each with two aliased
effects.

• Use fundamental principles, domain knowledge, follow-up experiment to
de-alias.
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One Quarter Fraction: 2k−2 Design

Parts manufactured in an injection molding process are showing excessive
shrinkage. A quality improvement team has decided to use a designed experi-
ment to study the injection molding process so that shrinkage can be reduced.
The team decides to investigate six factors
A: mold temperature
B: screw speed
C: holding time
D: cycle time
E: gate size
F : holding pressure
each at two levels, with the objective of learning about main effects and in-
teractions.
They decide to use 16-run fractional factorial design.

• a full factorial has 26=64 runs.

• 16-run is one quarter of the full factorial

• How to construct the fraction?
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Injection Molding Experiment: 26−2 Design

basic design
A B C D E = ABC F = BCD shrinkage
− − − − − − 6
+ − − − + − 10
− + − − + + 32
+ + − − − + 60
− − + − + + 4
+ − + − − + 15
− + + − − − 26
+ + + − + − 60
− − − + − + 8
+ − − + + + 12
− + − + + − 34
+ + − + − − 60
− − + + + − 16
+ − + + − − 5
− + + + − + 37
+ + + + + + 52

Two defining relations are used to generate the columns for E

and F .

I = ABCE, and I = BCDF
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They induce another defining relation:

I = ABCE ∗BCDF = AB2C2DEF = ADEF

The complete defining relation:

I = ABCE = BCDF = ADEF

Defining contrasts subgroup: {I, ABCE,BCDF,ADEF}



Alias Structure

I = ABCE = BCDF = ADEF implies

A = BCE = ABCDF = DEF

Similarly, we can derive the other groups of aliased effects.

A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF
B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF
C = ABE = BDF = ACDEF AD = EF = BCDE = ABCF
D = BCF = AEF = ABCDE AE = BC = DF = ABCDEF
E = ABC = ADF = BCDEF AF = DE = BCEF = ABCD
F = BCD = ADE = ABCEF BD = CF = ACDE = ABEF

BF = CD = ACEF = ABDE
ABD = CDE = ACF = BEF
ACD = BDE = ABF = CEF

Wordlength pattern W = (W0,W1, . . . ,W6), where Wi is the

number of defining words of length i (i.e., involving i factors)

W = (1,0,0,0,3,0,0)

Resolution is the smallest i such that i > 0 and Wi > 0. Hence

it is a 26−2
IV design
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26−2 Design: an Alternative

• Basic Design: A, B, C, D

• E = ABCD, F = ABC, i.e., I = ABCDE, and I = ABCF

• which induces: I = DEF

• complete defining relation: I = ABCDE = ABCF = DEF

• wordlength pattern: W = (1,0,0,1,1,1,0)
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• Alias structure (ignore effects of order 3 or higher)

A = .. AB = CF = ..
B = .. AC = BF = ..
C = .. AD = ..
D = EF = .. AE = ..
E = DF = .. AF = BC = ..
F = DE = .. BD = ..

BE = ..
CD = ..
CE = ..

• an effect is said to be clearly estimable if it is not aliased with main
effect or two-factor interactions.

• Which design is better d1 or d2? d1 has six clearly estimable main effects

while d2 has three clearly estimable main effects and six clearly estimable

two-factor ints.



Minimum Aberration Criterion

Recall 2k−p with maximum resolution should be preferred. But, it is possible

that there are two designs that attain the maximum resolution. How should

we further distinguish them?

For example, consider 27−2 fractional factorial design

d1: basic design: A, B, C, D, E; F = ABC, G = ABDE

complete defining relation: I = ABCF = ABDEG = CDEFG

wordlength pattern: W = (1,0,0,0,1,2,0,0)

Resolution: IV

d2: basic design: A, B, C, D, E; F = ABC, G = ADE

complete defining relation: I = ABCF = ADEG = BCDEFG

wordlength pattern: W = (1,0,0,0,2,0,1,0)

Resolution: IV

d1 and d2, which is better?
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Minimum Aberration Criterion

Definition: Let d1 and d2 be two 2k−p designs, let r be the smallest positive

integer such that Wr(d1) ̸= Wr(d2).

If Wr(d1) < Wr(d2) , then d1 is said to have less aberration than d2.

If there does not exist any other design that has less aberration than d1, then

d1 has minimum aberration.



Chapter Review

• 2k design

• 2k design without replication

• 2k−p design
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