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Revisit Previous Lecture

• One factor analysis

yij = µi + ϵij = µ+ τi + ϵij

{
i = 1,2 . . . a
j = 1,2, . . . ni

• F -test.

• Contrast test and multiple inferences
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Pairwise Comparison

• A special case of contrast Γ = µi − µj

• All previous method (t test with Bonferroni or Scheffe) still

work

• Unless one has specified which pairs to compare before ana-

lyzing the data, we want to make all possible pairwise com-

parisons (m = (a(a− 1)/2) pairs)

We want to compare the largest group mean vs smallest

group mean. Does it count as m = 1?

• Bonferroni or Scheffe may not be good choice, since both

are conservative for this scenario.
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Tukey’s method

• Consider all possible pairwise comparisons: Γ = µi−µj. Esti-

mate: C = ȳi.− ȳj., St. Error: S.E.C =
√
MSE(1/ni +1/nj)

• Need to find a critical value: Q

• Simultaneous Test: |C/S.E.C| vs Q

• This also implies that simultaneous CI: C ±Q S.E.C

• To control the overall error rate, we need to study the dis-

tribution of

max
all possible pairs

|C/S.E.C|

under null (i.e., all means are the same), which can be ob-

tained by a simulation. And Q will be the 1 − α quantile of

this distribution

• When ni ≡ n, this distribution is related to studentized range

distribution (a groups, d.f. = n− a).
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How to interpret multiple inferences

It is possible that there are contradictions between inferences.

How do we explain it?

Rejection ⇔ Scientific Discovery

α overall rate ⇔ with high chance ,all claimed scientific discov-

eries are true
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Dunnett’s method

• Consider all possible pairwise comparisons against one spe-

cific control level (index c): Γ = µi−µc for all i ̸= c Estimate:

C = ȳi. − ȳc., St. Error: S.E.C =
√
MSE(1/ni +1/nc)

• The critical value: Q is the 1−α quantile of this distribution

of

max
i̸=c

|C/S.E.C|

under null (all means are same).

• Simultaneous Test and C.I.: |C/S.E.C| vs Q; C ±Q S.E.C

• When ni ≡ n, this table of Q is given by Dunnett (1964).
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Hsu’s MCB

Multiple Comparisons with the Best sample mean level: to find

a subset of index {1, . . . , a} such that with 1− α, it contains the

index of the best treatment.

• Perform a hypotheses: H0: The ith treatment is the best.

• MCB = index of fail-to-reject hypotheses

• We perform a one-side Dunnett’s method

– The one side critical value: Q is the 1−α quantile of this

distribution of

max
i ̸=c

C/S.E.C

under null (all means are same).

• Since there is only one true null hypothesis, there is no need

for multiplicity control,i.e., all a Dunnett’s comparisons are

conducted under α not α/a.
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randomized complete block design (RCBD)

Penicillin Experiment
In this experiment, four penicillin manufacturing processes (A,
B, C and D) were being investigated. Yield was the response.
It was known that an important raw material, corn steep liquor,
was quite variable. The experiment and its results were given
below:

blend 1 blend 2 blend 3 blend 4 blend 5
A 891 844 812 871 793

B 883 772 871 923 814

C 972 923 874 892 801

D 944 791 853 844 882

• Blend is a nuisance factor, treated as a block factor;

• (Complete) Blocking: all the treatments are applied within
each block, and they are compared within blocks.

• Advantage: Eliminate blend-to-blend (between-block) varia-
tion from experimental error variance when comparing treat-
ments.

• Cost: degree of freedom.
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RCBD

• b blocks each consisting of (partitioned into) a experimental

units

• a treatments are randomly assigned to the experimental units

within each block

• Typically after the runs in one block have been conducted,

then move to another block. (Difference with completely

randomized design)

• Typical blocking factors: day, batch of raw material etc.

• Results in restriction on randomization because randomiza-

tion is only within blocks.
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Statistical Model

• b blocks and a treatments

• Statistical model is

yij = µ+ τi + βj + ϵij

{
i = 1,2, . . . , a
j = 1,2, . . . , b

µ - grand mean

τi - ith treatment effect

βj - jth block effect

ϵij ∼ N(0, σ2)

• Similarly to one factor analysis
∑a

i=1 τi = 0;

• Random Block Effect (randomly selected blocks, farming
fields): βj are random variables following N(0, σ2β)

• Fixed Block Effect (fixed blocks, e.g. sex): βj are unknown
constants and

∑b
j=1 βj = 0.
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Sum of Squares (SS)

• yij − y.. = (yi. − y..) + (y.j − y..) + (yij − yi. − y.j + y..)

• Can partition SST =
∑∑

(yij − y..)2 into

b
∑

(yi. − y..)
2 + a

∑
(y.j − y..)

2 +
∑∑

(yij − yi. − y.j + y..)
2

SSTrt = b
∑

(yi. − y..)2 = b
∑

(ϵi. + τi − ϵ..)2 df= a− 1
SSBlk = a

∑
(y.j − y..)2 = a

∑
(ϵ.j + βj − ϵ.. − β.)2 df = b− 1

SSE =
∑∑

(yij − yi. − y.j + y..)2 =
∑∑

(ϵij − ϵi. − ϵ.j + ϵ..)2 df = (a− 1)
×(b− 1)

How do we determine the d.f.?

Hence:

• SST = SSTreatment +SSBlock +SSE

• The Mean Squares are

MSTreatment = SSTreatment/(a− 1), MSBlock = SSBlock/(b− 1),

and MSE = SSE/(a− 1)(b− 1).
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subheading Testing Basic Hypotheses

• H0 : τ1 = τ2 = . . . = τa = 0 vs H1 : at least one is not

• Can show:

E(MSE)=σ2

E(MSTreatment) = σ2 + b
∑a

i=1 τ
2
i /(a− 1)

E(MSBlock) = σ2 + a
∑b

j=1 β
2
j /(b− 1) or σ2 + aσ2β

• Use F-test to test H0:

F =
MSTreatment

MSE
=

SSTreatment/(a− 1)

SSE/((a− 1)(b− 1))

• Under null, F ∼ Fa−1,(a−1)(b−1)

• May perform test for block effects

– Usually not of interest.

– Randomization is restricted

– Block effect may be confounded with other factor due to restricted
randomization
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Block vs non-Block design

Estimating τi − τj under random block effect:

• Block Design: yi. − yj. has variance 2σ2/b

• Non-block Design: yij = µi + ϵij = µ + τi + ϵij where ϵij ∼
N(σ2 + σ2β). yi. − yj. has variance 2(σ2 + σ2β)/b

• Non-block Design has higher d.f. for SSE.

• Reducing SSE vs. Reducing degree of freedom;

• R.E. = Relative Efficiency of RCBD to CRD

R.E. =
MSECRD

MSERCBD
≈

SSBlock + b(a− 1)MSE

(ab− 1)MSE
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Pairwise Treatments Comparison

• Γ = τi− τj. Estimate: C = ȳi.− ȳj. = ϵ̄i.− ϵ̄j., and St. Error:

S.E.C =
√
MSE(1/ni +1/nj)

• Need to find a critical value: Q

• Simultaneous Test: |C/S.E.C| vs Q

• This also implies that simultaneous CI: C ±Q S.E.C

• Under null hypothesis,

max
all possible pairs

|C/S.E.C|

has a tractable distribution (studentized range distribution

with a groups and (a − 1)(b − 1) d.f.). Q will be the 1 − α

quantile of this distribution

• Other inference task, such as testing contrasts with Bonfer-

roni adjustment can be defined as in one factor analysis.
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Factorial analysis

Bottling Experiment

A soft drink bottler is interested in obtaining more uniform fill

heights in the bottles produced by his manufacturing process.

An experiment is conducted to study three factors of the pro-

cess, which are

the percent carbonation (A): 10, 12, 14 percent
the operating pressure (B): 25, 30 psi

the line speed (C): 200, 250 bpm

The response is the deviation from the target fill height. Each

combination of the three factors has two replicates and all 24

runs are performed in a random order. The experiment and data

are shown below.
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pressure(B)
25 psi 30 psi

LineSpeed(C) LineSpeed(C)
Carbonation(A) 200 250 200 250

10 -3,-1 -1,0 -1,0 1, 1
12 0, 1 2,1 2,3 6,5
14 5,4 7,6 7,9 10,11



Factorial Design

• Structure

– a number of factors: F1, F2, . . ., Fr.

– each with a number of levels: l1, l2, . . ., lr

– number of all possible level combinations (treatments):

l1 × l2 . . .× lr

– interested in (main) effects, 2-factor interactions (2fi),

3-factor interactions (3fi), etc.

• Require complete randomization of the order of experiments

– One needs to repeatly change experimental conditions
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Statistical Model (Two Factors: A and B)

• Statistical model is

yijk = µij + ϵijk = µ+ τi + βj + (τβ)ij + ϵijk

 i = 1,2, . . . , a
j = 1,2, . . . , b
k = 1,2, . . . , n

µ - grand mean

τi - ith level effect of factor A (ignores B) (main effects of A)

βj - jth level effect of factor B (ignores A) (main effects of B)

(τβ)ij - interaction effect of combination ij (Explain variation not
explained by main effects)

ϵijk ∼ N(0, σ2)

• Over-parameterized model: must include certain parameter constraints.
Typically ∑

i τi = 0
∑

j βj = 0
∑

i (τβ)ij = 0
∑

j (τβ)ij = 0
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Estimates

• Rewrite observation as:

yijk = y... + (yi.. − y...) + (y.j. − y...) + (yij. − yi.. − y.j. + y...) + (yijk − yij.)

• result in estimates

µ̂ = y...

τ̂i = yi.. − y...

β̂j = y.j. − y...̂(τβ)ij = yij. − yi.. − y.j. + y...

• predicted value at level combination ij is

ŷijk = yij.

• Residuals are

ϵ̂ijk = yijk − yij.
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Partitioning the Sum of Squares

• Based on

yijk = y... + (yi.. − y...) + (y.j. − y...) + (yij. − yi.. − y.j. + y...) + (yijk − yij.)

• Calculate SST =
∑

(yijk − y...)2

• Right hand side simplifies to

SSA : bn
∑

i (yi.. − y...)2+ df = a− 1

SSB : an
∑

j (y.j. − y...)2+ df = b− 1

SSAB : n
∑

i

∑
j (yij. − yi.. − y.j. + y...)2+ df = (a− 1)(b− 1)

SSE :
∑

i

∑
j

∑
k(yijk − yij.)2 df = ab(n− 1)

• SST=SSA + SSB + SSAB + SSE

• Using SS/df leads to MSA,MSB, MSAB and MSE.
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Testing Hypotheses

1 Interaction effects of AB:

H0 : (τβ)ij = 0 for all i, j vs H1 : at least one (τβ)ij ̸= 0.

2 Main effects of A: H0 : All τi = 0 vs H1 : at least one τi ̸= 0.

3 Main effects of B: H0 : All βj = 0 vs H1 : at least one βj ̸= 0.

• E(MSE)=σ2

E(MSA) = σ2 + bn
∑

τ2i /(a− 1)

E(MSB) = σ2 + an
∑

β2
j /(b− 1)

E(MSAB) = σ2 + n
∑

(τβ)2ij/(a− 1)(b− 1)

• Use F-statistics for testing the hypotheses above:

1: F = MSAB
MSE

2: F = MSA
MSE

3: F = MSB
MSE

∼ Fdf1,df2

for respective d.f.s under null hypotheses.
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Interaction Effect (No interaction)
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Difference between level means of B (with A fixed at a level)
does not depend on the level of A; demonstrated by two parallel
lines.

Optimal level of A plus optimal level of B leads to optimal com-
bination.
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Interaction Effect
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Difference between level means of B (with A fixed at a level)
depends on the level of A. Making any argument over main
effects will be misleading.
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Multiple comparison when factors don’t interact
When factors don’t interact, i.e., the F test for interaction is not significant
in the ANOVA, factor level means can be compared to draw conclusions
regarding their effects on response, if the main effect F test is significant.

Pairwise comparison for factor A:

• Consider all possible pairwise comparisons: Γ = µ+ τi−µ− τj. Estimate:

C = ȳi.. − ȳj.., St. Error: S.E.C =
√

MSE(1/bn+1/bn)

• Need to find a critical value: Q

• Simultaneous Test: |C/S.E.C| vs Q

• This also implies that simultaneous CI: C ±Q S.E.C

• Q will be the 1−α quantile of a distribution that is related to studentized
range distribution (a groups, ab(n− 1) d.f.).

• Bonferroni/Scheffe are alternative methods

Similar approach for the comparison of factor B.
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Multiple comparisons when factors interact

When factors interact, multiple comparison is usually directly

applied to treatment means

µij = µ+ τi + βj + (τβ)ij vs µi′j′ = µ+ τi′ + βj′ + (τβ)i′j′

This is equivalent to viewing a two-factor problem as a one-factor

(with ab levels) problem

• µ̂ij = ȳij. and µ̂i′j′ = ȳi′j′.

• Var(ȳij. − ȳi′j′.)=
2σ2
n and standard error is

√
2MSE/n

• there are ab treatment means and m = ab(ab−1)
2 pairs.

• Tukey’s/Bonferroni’s/Scheffe’s method.

Combine the interaction plot with field knowledge to better un-

derstand the underlying mechanism.
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Test simple effects within an interaction

• Test for the effect of A within each level of B (as A*B is

significant)

• This yields b F test, testing: given a fixed j, does µ1j =

µ2j = . . . = µaj?

• Each F test is an ANOVA task for a column of data, but

we use the MSE of the whole data rather than the MSE

obtained from data column. Thus the d.f. of the F test is

(a− 1, ab(n− 1)), not (a− 1, a(n− 1)).

• Reason: larger degree of freedom means a better σ2 estima-

tion
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Pooling Sums of Squares in Two-Factor ANOVA

• Some argue that an insignificant interaction should be dropped
from the model (i.e., pooled with error)

Model: yijk = µ+ τi + βj + ϵijk

SSE∗ = SSE + SSAB

df∗E = ab(n− 1) + (a− 1)(b− 1)

• Increases DF but takes a risk of inappropriate modeling

• p-value under the pooled model is different to interpret. It
becomes a “conditional” p-value

• Should be considered when

– The test statistic MSAB/MSE falls substantially below
the action limit of the decision rule (say MSAB/MSE < 2
for α = 0.05, or reporting large p-value like > 0.25);

– The degrees of freedom associated with MSE are small,
perhaps 5 or less.
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General Plan for Two-Factor ANOVA

• Construct scatterplot / interaction plot

• Run full model

• Check assumptions

– Residual plots

– Histogram / QQplot

– Ordered residuals plot

• Check significance of interaction

Similar strategy for high order factor ANOVA
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If Interactions Are Not Significant

• Determine whether pooling is beneficial

– If yes, rerun analysis without interaction

• Check significance of main effects

– If factor insignificant, determine whether pooling is bene-

ficial

∗ If yes, rerun analysis as one-way ANOVA

– If statistically significant factor has more than two levels,

use multiple comparison procedure to assess differences

∗ Contrasts can also be used
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If Interactions Are Significant but not Important

• Plots and a careful examination of the cell means may indicate that the
interaction is not very important even though it is statistically significant.

– The interaction effects may be much smaller in magnitude than the
main effects;

– The interaction effects may only be apparent in a small number of
treatments as in Plot #2.

– The subject area specialist (researcher) needs to be consulted in de-
ciding whether an interaction is important or unimportant

• Use the marginal means for each significant main effect to describe the
important results for the main effects, but carefully interpret the marginal
means as averages over the levels of the other factor and not a main
effect.

• Keep the interaction in the model.
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If Interactions Are Significant and Important

The interaction effect is so large and/or pervasive that main

effects cannot be interpreted on their own. Options include the

following:

• Can take the approach of one-way ANOVA with ab levels

to compare factor level means. Use linear combinations to

compare various means (e.g., levels of factor A for each level

of factor B).

• Use the interaction plots for discussion purposes on interac-

tions between factors.

• Performs one-way ANOVA on one factor for a fixed level of

the other factor.
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Chapter Review

• Pairwise Comparison

• RCBD

• Factorial Design
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