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“Controllable factor” means: you can direct tune its value (e.qg.,
pressure in a manufacturing process) or you can select subjects
such that the factor value can be tuned (e.g., sex in a medical
study)
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Observational Study vs Experimental Studyl

e Causality and Association

— Response Y, controllable factors X, other factors Z
— Observational studies observe E(Y|X =1) — E(Y|X = 0)
— Causality [Z[E(Y|X =1,Z=2)—EX|X =0,Z = 2)|fz(z)dz

e Goal of Experiment: Design the assignment of X to control
the joint distribution of (X, Z)
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Terminology

e Experimental factor (or variable): Controlled aspect of the
experiment. One may choose not to control all controllable
factors.

e Factor level: Specific value of factor.

e Treatment: A single factor level or combinations of two or
more factors.

e Unit: ‘“the smallest division of experimental material such
that any two units may receive different treatments in the
actual experimen” (Cox,1992)

e Experimental run (trial): One experiment which applies one
treatment to one unit.

e EXperimental error: Variation between repeated runs
Source of experimental error: variation among units due to
uncontrolled variables and background noise such as mea-
surement error. (A better design can reduce experimental
error)
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Machine Tool Life Experiment

An engineer is interested in the effects of cutting speed (A),
tool geometry (B) and cutting angle (C) on the lifespan (in
hours) of a machine tool. Two levels of each factor are chosen
(hence 8 possible treatments) and three replicates of for each
treatment are run. The results:

Factor Replicate
B C I IT III
— - 22 31 25
— 32 43 29
35 34 50
— 55 47 46
-+ 44 45 38
—+ 40 37 36
_|_
_|_

>

|+
|

60 50 54
39 41 47

+ I+ 1+ 1 4+

_|_
_|_

Unit: The batch of raw material, which may produce multiple
tools

Results: average lifespan for a batch of products
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Fundamental Principles: Randomizationl

The selection of unites, allocation of treatments to units,
run order and (if possible) measurement order need to be
randomized.

Protect against all observable and non-observable latent vari-
ables

Ensure the independence between experimental factors and
other variables. Therefore, sub-populations corresponding to
different treatments are almost identical.

Ensure the indepdence between runs
Ensure the validity of experimental error estimation.

Ensure the validity of statistical inferences.
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Permutation Test

Complete randomization makes possible to derive and perform
Two Sample Permutation Test

An experiment was conducted by an amateur gardener whose
object was to discover whether a change in the fertilizer mixture
applied to his tomato plants would result in an improved yield. He
had 11 plants set out in a single row; 5 were given the standard
fertilizer mixture A, and the remaining 6 were fed a supposedly
improved mixture B. The A's and B’'s were randomly applied to
the positions in the row.

Pos 1 2 3 4 5 6 4 8 9 10 11
Trt A A B B A B B B A A B
Yds 299 114 26.6 23.7 253 285 142 179 165 21.1 24.3

Mean difference (modified minus standard)= yp — y4 = 1.69
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Hypothesis Test on the effect

Hy: the modified fertilizer does not improve the (mean) yield.
H,: the modified fertilizer improves the (mean) yield.

Under the null hypothesis, A and B are mere labels and should
not affect the yield. For example, the first plant would yield 29.9
pounds of tomatoes no matter it had been labeled as A or B (or
fed A or B).

There are &, = 462 ways of allocating 5 A’s and 6 B's to
the 11 plants, any one of which could equally be chosen. The
used design is just one of 462 equally likely possibilities. (why?)
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For example:

Pos 1 2 3 4 5 9 10 11
Yds 209 11.4 26.6 23.7 253 285 142 17.9 16.5 21.1 24.3
LL1 A A A A A B B B B B B
LL2 A A A A B A B B B B B
LL462 B B B B B B A A A A A

LL1, LL2, etc are equally likely.
LL1: mean difference between B and A is -2.96
LL2: mean difference between B and A is -4.14

LL462: mean difference between B and A is 5.43

Under the null hypothesis, these differences are equally likely.
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Randomization Distribution (Histogram) of the Mean Differences
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Observed Diff = 1.69

P-value = Pr(Diff > 1.69 | randomization) = 123 = .335

Because P-value > «, fail to Hp.
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Principles: Replication, Blocking, Double Blind

e Replication

— Each treatment is applied to a number of units represen-
tative of the population (of units)

— Enable the estimation of experimental error. This estima-
tion will be used to assess the accuracy of inferences.

e Blocking

— Balanced treatment assignment w.r.t controllable nuisance
factor (block factor); reduce experimental error

— Restricted randomization: total randomization within block
and the block factor may not independent to uncontrolled

factors

e Double Blind

— Remove subject biased and placebo effect
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Single Factor Analysisl

e Interested in comparing several treatments, i.e., one factor
with several levels

e Could do numerous two-sample t-tests; we want to test
equality of all treatments simultaneously.

e Statistical Model:
) 1.2...
Yij _—F‘i+€ij _—“‘I'Ti_l_eij {j—— 1,2,...n;

@ - grand mean; 7; - ¢th treatment effect; u; - ¢th treat-
ment mean; €;j - €rror term

Constraint: >°% 7, = 0.

e Completely Randomized Design ensures that except receiving
different treatements, all units are statistically equivalent and
indepdendent, i.e., €;; are i.i.d. We further assume that €jj ™
N(0,02).
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Partitioning the Sum of Squares

e Basic Hypotheses:

Ho:mM=m=... =74 =0 vsS Hy

e Notation

. 7; 7= 0 for at least one 1

— oy, = Z?izl yi; — ¥i. = y;./n; (treatment sample mean, or

row mean)

— Y. =2.2.Yij 2> Y. = y../N (grand sample mean)

— & = Yij — Ui

e Decomposition of Yij:

e Can show

> i (ig — 7.)°
Total SS
Total Variation

SST = SSreatments

Sini (T —7.)?
Treatment SS
Variation between

+ SSg

vii =Y.+ @i —9..) + (vij — Ui.)

+ 3% (Wij — ¥i)?
+ Error SS
-+ Variation within
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Test Statistic

— SSTreatments/(a — 1) _ MSTreatments
SSE/(N —a) MSEg

e Under null hypothesis, both 3; and 3. are consistent for pu,
i.e., SSTreatments Will be small.

e [y tends to small under null, and tends to be large under
alternative.

o C = (Fritical, )
e \What is the distribution Fp under null?

e Under null, SST, SStreatments and SSTreatments Tollows o2y 2
distribution with d.f. N —1, a—1 and N — a respectively.
SSTreatments aNd SSreatments are independent. Then, F
follows F,_1 ny_, distribution.
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Analysis of Variance (ANOVA) Table

Source of Sum of Degrees of Mean F
Variation Squares Freedom Square
Between = SSreatment a—1 MSTreatment £0
Within SSE N —a MSEg
Total SST N —1

Alternative way of computing

> 9 y2 o
SST = Zzyij - y”/N; SSTreatment = 2 n—z — y”/N

SSE=SST - SSTreatment

e Decision Rule: If Fg > F,_1 N_41-q OF P-vValue = Pr(Fy,_1 Nn—q >
Fpy) < a, then reject Hg

e When a = 2, F-test is equivalent to 2-sample t test.
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'Model Diagnose|

e Model Assumptions

1 Assumption on means is correct
2 Independent observations
3 Errors normally distributed

4 Constant variance

Yij = i + €;;
Yij = Yi. + €4
observed = predicted -+ residual

e View residuals as observable surrogate of €’'s

e Diagnostics use predicted responses and residuals.
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Diagnostic Method

e Normality

— Histogram of residuals
— Normal probability plot / QQ plot of residuals
— Formal Tests: e.g., Shapiro-Wilk Test

— Minor deviation from normality is acceptable

e Constant Variance
— Plot €;; vs g;; (residual plot)
— Hartley Test
— Non-constant variance leads to incorrect MSE

e Independence

— Plot &, vs time/space

— Plot €;; vs variable of interest
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Normal Probability Plot

Y1,Y>,...,Y, is @ random sample from a population with
mean p and variance o2.

Order Statistics: Y(1)7Y(2)7"'7Y(n) where Y(z) is the ith
smallest value.

if the population is normal, i.e., N(u,c?), then

E(Y()) ® i+ 0Za; With a; = 125/5 for 1 <i<n.

Given a sample y1,yo,...,yn, the plot of (Zai,y(z-)) is called
the normal probability plot or QQ plot.

the points falling around a straight line indicate nor-
mality of the population; Deviation from a straight line
pattern indicates non-normality (the pen rule)
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QQ plot

Don’t just focus on the middle portion of the QQ plot Below is

a bad QQ plot

\ \ \
-2 -1 0

Quantiles of Standard Normal

This QQ plot corresponds to a heavier tailed distribution than

Normal distribution (e.g. t distribution)
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Formal Test

e Plots are usually enough for identifying gross violations of
assumptions (since inferences are quite robust)

e Shapiro-Wilk test: a normality test based on the correlation
between the residuals and their expected value.

Plots vs Tests: Test results are very dependent on n. With a
large enough sample size, a good formal test are likely to reject
null and claim violation, even if the deviation is slight. This is
unnecessary, since most of the inferences are robust.

e Plots for large-sample data set

e Tests for small-sample data set, where it is difficult to make
a judgment call
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Residual Plot

Residual Plot
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e Similar information as €;; vs ¢

e Never plot Ez] VS Yij
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Homogeneity of Variance: Hartley Test

e Hartley statistic,

2
H— m?X(Sé)
min(s;)

e Under Hgy, H's distribution only depends on a and n;'s. The
rejection region can be determined by simulations

e For balanced case (i.e., n; = n), statisticians have created
the table of critical values.

Hartley Test is sensitive to normality, hence more robust tests
are developed as well.
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Non-constant Variance: Impact and Remedy

Usually, when non-constant variance occurs, the variances (af’s)
depend on treatment means (u;'s), i.e. 022 = g(u;).

e Does not affect F-test dramatically when experiment is bal-
anced

e \Why concern?
e Lead to unreliable confidence intervals (to be discuss later).

e Variance-Stabilizing Transformations

— Transform data y;; to f(y;;), €.9. w;; to /7, with the
hope that the transformed data f(y;;) do not violate the
constant variance assumption.

— fis called a variance-stabilizing transformation; ,/y, 109(y),
1/y, arcsin(y/y), and 1/,/y are some commonly used trans-
formations.

— Transformations are also used as remedies for nonnormal-
ity
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Ideas for Finding Proper Transformations

e Denote ¥ = f(Y); What is the mean and variance of Y7
e Approximate f(Y) by a linear function (Delta Method):
FOY) = f(w) + Y —p)f'(p)

Mean o =EY) =E(f(Y)) =~ E(f(w) +EWY —w)f'(p) =
f(w)

Variance o

[/ (1)]%g ()

e Need to choose f such that [f/(u)]%g(n) = constant

> = Var(Y) ~ [f'()]*Var(Y) = [f'(n)]%e® =

e When ¢g(u) is known, f can be derived explicitly.

Examples (c is some unknown
g(p) = cp (Poisson)  f(Y) = [ Zdu— f(Y) =VY
g =cp(t—p)  (Binomial)  f(V) = [ ——=du — f(¥) = arcsin(vY)
g(w) =cp®’(B#1)  (Box-Cox)  f(Y)= [pPdu— f(Y) =Y
g(p) = cp? (Box-Cox)  f(Y) = [ +du— f(Y)=logY

constant)
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Box-Cox Transformations

e Assume o2 = cu?P, then the variance-stabilizing transform
should be

_ [ YP g1,
f(Y)_{IogY =1

These transformations are referred to as Box-Cox transfor-
mations.

Clearly it is crucial to know what g is.

As a matter of fact, 8 can be regarded as a parameter, and
it can be estimated (identified) from data.
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Approximate Box-Cox Transformations:

e From the assumption o2 = cu?8, we have

az-z = cufﬂ for treatments : = 1,2,...,a.

Take logarithm of both sides,

1
logo; = §logc + Blogp;

e Let s; and y; be the sample standard deviations and means.
Because o; = s; and u; = y; , approximately,

logs; = constant 4 glogy; ,
where 1 = 1,...,a.

e \We can plot logs; against logy; , fit a straight line and use
the slope to estimate S (i.e., simple linear regression, Lecture
7).
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Multiple Comparisonl

A significant F test (i.e., rejection of null) only asserts the exis-
tence of difference between u;’'s, but doesn’t tell us where is the

difference. We still need to perform individual tests for possible
differences

e A contrastisdefinedasl =} % _; c;u;isa contrastif > ¥ _;c¢;
0.

Equivalently, I' = Y%, ¢;7;.
e Examples

1. 'y = p1 — p2 = p1 — p2 + 0pz + Opg,
c1=1,c0=—-1,c3=0,c4q =0
Comparing pu1 and uo».

2. To=pu3 —05u> —0.5u3 = pu1 — 0.5u> — 0.5u3 + Ougy
c1 =1,c0o = —0.5,c3 = —-0.5,c4 =0
Comparing w1 and the average of uo and us.
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Inference for a single contrastl

e Estimation of I': C' =3¢ c;y;.

e Test Ho:I' =0

¢ ~t(N —a),or

2

t =
¢
\/I\/ISEZn—i

(3 ey )? _ & cili )%/ Y c2/n;

2
I\/ISEZ% MSE

F=t>=

Under Hg, t ~ tny_q, F' ~ F1 n—_4, due to the independence
between y; 's and MSE.

e Rejection region: [t|>tn_q1_q/2 OF F'> F1 N_g1-q

e C.I., based on the same pivotal quantity

2

— C;

E Ciyi-itNa,la/QJMSEE —n:L
i
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Inference for multiple contrasts

e If each inference task has a probability of failure (type I er-
ror for test, or C.I. fail to cover true parameter), then this
failure probability can accumulate when performing multiple
inference tasks

e Simultaneously inferences requires: the probability of failing
at least one inference task is no more than «

e Pr({fail at least one task}) = Pr(U™,{fail the ith task}) <
>; Pr({fail the ith task})

e Bonferroni Correction: for each individual task, we set o/ =
a/m. This ensure the overall error rate is not bigger than «

2
e Bonferroni Contrast C.I.: > c;y; itN_%l_a/(gm)\/MSEZ '

S
n;
for m contrasts.

e universal but conservative correction

4-28



Scheffe’'s Method for Testing All Contrasts

e Consider all possible contrasts: I' = ) c;u;

2
Estimate: C =) cy;,, St. Error: S.E.0 = \/I\/ISEZC—Z'

ng

e Critical value: \/(a ~1)Fhy 4 1.N—a

e Scheffe’s simultaneous CI: C'+,/(a — 1)Fyq_1N—a S-E.c

e Scheffe's simultaneous Test: C/S.E.c Vs \/(a ~1)Fp 4 1.N-q

e Overall error rate for all possible (infinity many) contrasts

P(at least one type I error) < «

e Comparison between Scheffe and Bonferroni
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Chapter Reviewl

DoE
Principle of DoE
One factor analysis and ANOVA

Contrast testing
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