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Experimental study

“Controllable factor” means: you can direct tune its value (e.g.,

pressure in a manufacturing process) or you can select subjects

such that the factor value can be tuned (e.g., sex in a medical

study)
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Observational Study vs Experimental Study

• Causality and Association

– Response Y , controllable factors X, other factors Z

– Observational studies observe E(Y |X = 1)− E(Y |X = 0)

– Causality
∫
Z[E(Y |X = 1, Z = z)−E(Y |X = 0, Z = z)]fZ(z)dz

• Goal of Experiment: Design the assignment of X to control

the joint distribution of (X,Z)
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Terminology

• Experimental factor (or variable): Controlled aspect of the
experiment. One may choose not to control all controllable
factors.

• Factor level: Specific value of factor.

• Treatment: A single factor level or combinations of two or
more factors.

• Unit: “the smallest division of experimental material such
that any two units may receive different treatments in the
actual experimen” (Cox,1992)

• Experimental run (trial): One experiment which applies one
treatment to one unit.

• Experimental error: Variation between repeated runs
Source of experimental error: variation among units due to
uncontrolled variables and background noise such as mea-
surement error. (A better design can reduce experimental
error)
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Machine Tool Life Experiment

An engineer is interested in the effects of cutting speed (A),
tool geometry (B) and cutting angle (C) on the lifespan (in
hours) of a machine tool. Two levels of each factor are chosen
(hence 8 possible treatments) and three replicates of for each
treatment are run. The results:

Factor Replicate
A B C I II III
− − − 22 31 25
+ − − 32 43 29
− + − 35 34 50
+ + − 55 47 46
− − + 44 45 38
+ − + 40 37 36
− + + 60 50 54
+ + + 39 41 47

Unit: The batch of raw material, which may produce multiple
tools

Results: average lifespan for a batch of products
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Fundamental Principles: Randomization

• The selection of unites, allocation of treatments to units,

run order and (if possible) measurement order need to be

randomized.

• Protect against all observable and non-observable latent vari-

ables

• Ensure the independence between experimental factors and

other variables. Therefore, sub-populations corresponding to

different treatments are almost identical.

• Ensure the indepdence between runs

• Ensure the validity of experimental error estimation.

• Ensure the validity of statistical inferences.
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Permutation Test

Complete randomization makes possible to derive and perform

Two Sample Permutation Test

An experiment was conducted by an amateur gardener whose

object was to discover whether a change in the fertilizer mixture

applied to his tomato plants would result in an improved yield. He

had 11 plants set out in a single row; 5 were given the standard

fertilizer mixture A, and the remaining 6 were fed a supposedly

improved mixture B. The A’s and B’s were randomly applied to

the positions in the row.

Pos 1 2 3 4 5 6 7 8 9 10 11

Trt A A B B A B B B A A B

Yds 29.9 11.4 26.6 23.7 25.3 28.5 14.2 17.9 16.5 21.1 24.3

Mean difference (modified minus standard)= ȳB − ȳA = 1.69
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Hypothesis Test on the effect

H0: the modified fertilizer does not improve the (mean) yield.

Ha: the modified fertilizer improves the (mean) yield.

Under the null hypothesis, A and B are mere labels and should

not affect the yield. For example, the first plant would yield 29.9

pounds of tomatoes no matter it had been labeled as A or B (or

fed A or B).

There are 11!
5!6! = 462 ways of allocating 5 A’s and 6 B’s to

the 11 plants, any one of which could equally be chosen. The

used design is just one of 462 equally likely possibilities. (why?)
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For example:

Pos 1 2 3 4 5 6 7 8 9 10 11
Yds 29.9 11.4 26.6 23.7 25.3 28.5 14.2 17.9 16.5 21.1 24.3
LL1 A A A A A B B B B B B
LL2 A A A A B A B B B B B
...

...
...

...
...

...
...

...
...

...
...

...
LL462 B B B B B B A A A A A

LL1, LL2, etc are equally likely.

LL1: mean difference between B and A is -2.96

LL2: mean difference between B and A is -4.14
...

LL462: mean difference between B and A is 5.43

Under the null hypothesis, these differences are equally likely.
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Randomization Distribution (Histogram) of the Mean Differences
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Observed Diff = 1.69

P -value = Pr(Diff ≥ 1.69 | randomization) = 155
462 = .335

Because P -value ≥ α, fail to H0.
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Principles: Replication, Blocking, Double Blind

• Replication

– Each treatment is applied to a number of units represen-

tative of the population (of units)

– Enable the estimation of experimental error. This estima-

tion will be used to assess the accuracy of inferences.

• Blocking

– Balanced treatment assignment w.r.t controllable nuisance

factor (block factor); reduce experimental error

– Restricted randomization: total randomization within block

and the block factor may not independent to uncontrolled

factors

• Double Blind

– Remove subject biased and placebo effect
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Single Factor Analysis

• Interested in comparing several treatments, i.e., one factor

with several levels

• Could do numerous two-sample t-tests; we want to test

equality of all treatments simultaneously.

• Statistical Model:

yij = µi + ϵij = µ+ τi + ϵij

{
i = 1,2 . . . a
j = 1,2, . . . ni

µ - grand mean; τi - ith treatment effect; µi - ith treat-

ment mean; ϵij - error term

Constraint:
∑a

i=1 τi = 0.

• Completely Randomized Design ensures that except receiving

different treatements, all units are statistically equivalent and

indepdendent, i.e., ϵij are i.i.d. We further assume that ϵij ∼
N(0, σ2).
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Partitioning the Sum of Squares

• Basic Hypotheses:

H0 : τ1 = τ2 = . . . = τa = 0 vs H1 : τi ̸= 0 for at least one i

• Notation

– yi. =
∑ni

j=1 yij → yi. = yi./ni (treatment sample mean, or

row mean)

– y.. =
∑∑

yij → y.. = y../N (grand sample mean)

– ϵ̂ij = yij − yi.

• Decomposition of yij: yij = y.. + (yi. − y..) + (yij − yi.)

• Can show∑
i
∑

j (yij − y..)2 =
∑

i ni(yi. − y..)2 +
∑

i
∑

j (yij − yi.)
2

Total SS = Treatment SS + Error SS
Total Variation = Variation between + Variation within

SST = SSTreatments + SSE
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Test Statistic

F =
SSTreatments/(a− 1)

SSE/(N − a)
=

MSTreatments

MSE

• Under null hypothesis, both yi. and y.. are consistent for µ,

i.e., SSTreatments will be small.

• F0 tends to small under null, and tends to be large under

alternative.

• C = (Fcritical,∞)

• What is the distribution F0 under null?

• Under null, SST, SSTreatments and SSTreatments follows σ2χ2

distribution with d.f. N − 1, a − 1 and N − a respectively.

SSTreatments and SSTreatments are independent. Then, F

follows Fa−1,N−a distribution.
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Analysis of Variance (ANOVA) Table

Source of Sum of Degrees of Mean F
Variation Squares Freedom Square
Between SSTreatment a− 1 MSTreatment F0
Within SSE N − a MSE
Total SST N − 1

Alternative way of computing

SST =
∑∑

y2ij − y2../N ; SSTreatment =
∑ y2i.

ni
− y2../N

SSE=SST - SSTreatment

• Decision Rule: If F0 > Fa−1,N−a,1−α or p-value = Pr(Fa−1,N−a >

F0) < α, then reject H0

• When a = 2, F -test is equivalent to 2-sample t test.
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Model Diagnose

• Model Assumptions

1 Assumption on means is correct

2 Independent observations

3 Errors normally distributed

4 Constant variance

yij = µi + ϵij
yij = yi. + ϵ̂ij

observed = predicted + residual

• View residuals as observable surrogate of ϵ’s

• Diagnostics use predicted responses and residuals.
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Diagnostic Method

• Normality

– Histogram of residuals

– Normal probability plot / QQ plot of residuals

– Formal Tests: e.g., Shapiro-Wilk Test

– Minor deviation from normality is acceptable

• Constant Variance

– Plot ϵ̂ij vs ŷij (residual plot)

– Hartley Test

– Non-constant variance leads to incorrect MSE

• Independence

– Plot ϵ̂ij vs time/space

– Plot ϵ̂ij vs variable of interest
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Normal Probability Plot

Y1, Y2, . . . , Yn is a random sample from a population with

mean µ and variance σ2.

Order Statistics: Y(1), Y(2), . . . , Y(n) where Y(i) is the ith

smallest value.

if the population is normal, i.e., N(µ, σ2), then

E(Y(i)) ≈ µ+ σZαi with αi =
i−3/8
n+1/4 for 1 ≤ i ≤ n.

Given a sample y1, y2, . . . , yn, the plot of (Zαi, y(i)) is called

the normal probability plot or QQ plot.

the points falling around a straight line indicate nor-

mality of the population; Deviation from a straight line

pattern indicates non-normality (the pen rule)
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QQ plot

Don’t just focus on the middle portion of the QQ plot Below is
a bad QQ plot
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This QQ plot corresponds to a heavier tailed distribution than
Normal distribution (e.g. t distribution)
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Formal Test

• Plots are usually enough for identifying gross violations of

assumptions (since inferences are quite robust)

• Shapiro-Wilk test: a normality test based on the correlation

between the residuals and their expected value.

Plots vs Tests: Test results are very dependent on n. With a

large enough sample size, a good formal test are likely to reject

null and claim violation, even if the deviation is slight. This is

unnecessary, since most of the inferences are robust.

• Plots for large-sample data set

• Tests for small-sample data set, where it is difficult to make

a judgment call
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Residual Plot

• Similar information as ϵ̂ij vs i

• Never plot ϵ̂ij vs yij
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Homogeneity of Variance: Hartley Test

• Hartley statistic,

H =
max(s2i )

min(s2i )

• Under H0, H’s distribution only depends on a and ni’s. The

rejection region can be determined by simulations

• For balanced case (i.e., ni = n), statisticians have created

the table of critical values.

Hartley Test is sensitive to normality, hence more robust tests

are developed as well.
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Non-constant Variance: Impact and Remedy

Usually, when non-constant variance occurs, the variances (σ2i ’s)
depend on treatment means (µi’s), i.e. σ2i = g(µi).

• Does not affect F-test dramatically when experiment is bal-
anced

• Why concern?

• Lead to unreliable confidence intervals (to be discuss later).

• Variance-Stabilizing Transformations

– Transform data yij to f(yij), e.g. yij to √
yij, with the

hope that the transformed data f(yij) do not violate the
constant variance assumption.

– f is called a variance-stabilizing transformation;
√
y, log(y),

1/y, arcsin(
√
y), and 1/

√
y are some commonly used trans-

formations.

– Transformations are also used as remedies for nonnormal-
ity
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Ideas for Finding Proper Transformations

• Denote Ỹ = f(Y ); What is the mean and variance of Ỹ ?

• Approximate f(Y ) by a linear function (Delta Method):

f(Y ) ≈ f(µ) + (Y − µ)f ′(µ)

Mean µ̃ = E(Ỹ ) = E(f(Y )) ≈ E(f(µ)) + E((Y − µ)f ′(µ)) =
f(µ)

Variance σ̃2 = Var(Ỹ ) ≈ [f ′(µ)]2Var(Y ) = [f ′(µ)]2σ2 =
[f ′(µ)]2g(µ)

• Need to choose f such that [f ′(µ)]2g(µ) = constant

• When g(µ) is known, f can be derived explicitly.

Examples (c is some unknown

constant)

g(µ) = cµ (Poisson) f(Y ) =
∫

1√
µ
dµ → f(Y ) =

√
Y

g(µ) = cµ(1− µ) (Binomial) f(Y ) =
∫

1√
µ(1−µ)

dµ → f(Y ) = arcsin(
√
Y )

g(µ) = cµ2β(β ̸= 1) (Box-Cox) f(Y ) =
∫

µ−βdµ → f(Y ) = Y 1−β

g(µ) = cµ2 (Box-Cox) f(Y ) =
∫

1
µ
dµ → f(Y ) = logY
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Box-Cox Transformations

• Assume σ2 = cµ2β, then the variance-stabilizing transform

should be

f(Y ) =

{
Y 1−β β ̸= 1;
log Y β = 1

These transformations are referred to as Box-Cox transfor-

mations.

Clearly it is crucial to know what β is.

As a matter of fact, β can be regarded as a parameter, and

it can be estimated (identified) from data.
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Approximate Box-Cox Transformations:

• From the assumption σ2 = cµ2β, we have

σ2i = cµ
2β
i for treatments i = 1,2, . . . , a.

Take logarithm of both sides,

logσi =
1

2
logc+ βlogµi

• Let si and ȳi. be the sample standard deviations and means.

Because σ̂i = si and µ̂i = ȳi., approximately,

logsi = constant + βlogȳi.,

where i = 1, . . . , a.

• We can plot logsi against logȳi., fit a straight line and use

the slope to estimate β (i.e., simple linear regression, Lecture

7).
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Multiple Comparison

A significant F test (i.e., rejection of null) only asserts the exis-
tence of difference between µi’s, but doesn’t tell us where is the
difference. We still need to perform individual tests for possible
differences

• A contrast is defined as Γ =
∑a

i=1 ciµi is a contrast if
∑a

i=1 ci =
0.

Equivalently, Γ =
∑a

i=1 ciτi.

• Examples

1. Γ1 = µ1 − µ2 = µ1 − µ2 +0µ3 +0µ4,
c1 = 1, c2 = −1, c3 = 0, c4 = 0
Comparing µ1 and µ2.

2. Γ2 = µ1 − 0.5µ2 − 0.5µ3 = µ1 − 0.5µ2 − 0.5µ3 +0µ4
c1 = 1, c2 = −0.5, c3 = −0.5, c4 = 0
Comparing µ1 and the average of µ2 and µ3.
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Inference for a single contrast

• Estimation of Γ: C =
∑a

i=1 ciȳi.

• Test H0 : Γ = 0

t =
C√

MSE
∑ c2i

ni

∼ t(N − a),or

F = t2 =
(
∑

ciȳi.)
2

MSE
∑ c2i

ni

=
(
∑

ciȳi.)
2/

∑
c2i /ni

MSE

Under H0, t ∼ tN−a, F ∼ F1,N−a, due to the independence
between ȳi.’s and MSE.

• Rejection region: |t| > tN−a,1−α/2 or F > F1,N−a,1−α

• C.I., based on the same pivotal quantity

∑
ciȳi. ± tN−a,1−α/2

√√√√MSE
∑ c2i

ni
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Inference for multiple contrasts

• If each inference task has α probability of failure (type I er-

ror for test, or C.I. fail to cover true parameter), then this

failure probability can accumulate when performing multiple

inference tasks

• Simultaneously inferences requires: the probability of failing

at least one inference task is no more than α

• Pr({fail at least one task}) = Pr(∪m
i=1{fail the ith task}) ≤∑

i Pr({fail the ith task})

• Bonferroni Correction: for each individual task, we set α′ =
α/m. This ensure the overall error rate is not bigger than α

• Bonferroni Contrast C.I.:
∑

ciȳi. ± tN−a,1−α/(2m)

√
MSE

∑ c2i
ni

for m contrasts.

• universal but conservative correction
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Scheffe’s Method for Testing All Contrasts

• Consider all possible contrasts: Γ =
∑

ciµi

Estimate: C =
∑

ciȳi., St. Error: S.E.C =

√
MSE

∑ c2i
ni

• Critical value:
√
(a− 1)Fα,a−1,N−a

• Scheffe’s simultaneous CI: C ±
√
(a− 1)Fα,a−1,N−a S.E.C

• Scheffe’s simultaneous Test: C/S.E.C vs
√
(a− 1)Fα,a−1,N−a

• Overall error rate for all possible (infinity many) contrasts

P (at least one type I error) ≤ α

• Comparison between Scheffe and Bonferroni
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Chapter Review

• DoE

• Principle of DoE

• One factor analysis and ANOVA

• Contrast testing
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