Purdue-NCKU program

Lecture 3
Hypothesis Testing

Dr. Qifan Song



Beyond quantitative inferencesl

Point/Interval estimations give a precise numerical argument
about the parameters

In many cases, instead of knowing the exact values, we want
to know the trend, especially in a preliminary study.

Is it better? vs how much better?

A researcher thinks that if knee surgery patients go to phys-
ical therapy twice a week (instead of 3 times), their recovery
period will be longer. Average recovery times for knee surgery
patients (if they go to therapy 3 times a week ) is 8.2 weeks.

(mean of recovery times < 8.2 weeks) versus (mean of re-
covery times > 8.2 weeks)
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Hypothesis

Hypothesis: A hypothesis is a statement about the true distri-
bution or eqivalently, a statement about the true parameter.

Math form of a hypothesis: 8 € ©g where ©g C ©.
Example

e Normal(u,0?) modeling. The mean of the distribution is
greater than 2: ©g = (2,0) ® (0, )

e Bernoulli(p) modeling. The variance of the distribution is
smaller or equal to 0.04: ©g={p:p(1—p) <0.04,0<p <1}

e Exponential(A) modeling. The probability of the distribu-
tion being greater than 10 is smaller than 0.01: ©g = {\:
exp(—10XA) < 0.01}
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Hypothesis Testingl

Given a data set, we decide whehter § € ©g or not?
Let ©1 = O, then it is equivalent to 0 € ©¢ versus 0 € ©O;.

Hypothesis Testing: Null vs Alternative Hypothesis

Hyg:0€©g wvs Hyp:0e€0©O;

We need to design a decision making process (accept Hg or
accept Hi) based on the observations.
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Reject Regionl

Decision making process can be view as a mapping from data to
{0,1}, i,e. ¥ : X" — {0,1}

e Reject Region, a subset of X", R = {data : ¥(data) = 1}.
All the possible data values that lead to the acceptance of
H.

e Example: if R = R"™, then we always accept Hj.

e [ here are, of course, infinite choices of R. The question will
be, how to evaluate a given R7

e A straightforward way is to examine whether R can give you
a correct decision
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Power function|

e Given any 0 € ©, we define power function
B(0) .= Pr(¢p(data) = 1) = Pr((X,...,Xn) €R)
— fR H?:l f@(xi)d$1 ce. dwn

e [ he chance to make a correction decision should be high,
thus

i When 6 € ©g, we want a small 3(0). Small chance of Type
I error

i When 0 € ©1, we want a large 8(0). Small chance of Type
II error
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Trade-off

small 3(0) for 8 € ©g implicitly wants a small set R

big B8(0) for 6 € ©1 implicitly wants a large set R

Thereis a trade-off between two goals and we need a strategy

to make the balance

The common strategy of statistical hypothesis testing

— For any 6 € ©qg, 8(0) < «a for some fixed small « i.e.,

maX@eeo 5(9) S Q.

— While the probability of committing type I error bounded,

we try to minimize the probability of type II error.
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Meaning of small o

o Pr((Xq1...,Xn) € R)) <a means that R represents the set
of rare or extreme cases under 6 € ©q

e We reject Hp, only when the data we observed is a rare case
for 6 € ©g. That is, there looks like a strong contradiction
between observations and null hypothesis.

e Small a means our strategy is: we are reluctant to reject Hy
unless data are not compatible with null hypothesis

e Alternative interpretation: Hg is our prior belief, if unneces-
sary, we will continue believing in it.

e In practice, we put default or previous knowledge as null
hypothesis.
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Meaning of large (§ values over ©4

A good test tries maximize B(0) over ©7. If we indeed make it,
then

o Pr((Xq1...,Xp) € R)) is non-small means that R represents
the set of possible or common cases under 6 € ©1

e When we reject Hp, the data looks like a regular case for 6 €
©4. That is, data are compatible with alternative hypothesis

In conclusion, a good test rejects Hg when data are clearly not

compatible with null hypothesis, but reasonably compatible with
alternative hypothesis
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Examples

e A bad test:

We want to test the biological sex of a person, male vs
female.

reject region: the person has natural green hair.
e A good test:
A fair criminal adjudication

A presumption of innocence, or the suspect is innocent until
proven guilty.
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How to find a good R7?

e Intuitively, we can examine the density [["_; fo(z;). R should
somehow include (x1,...,zn)'s that have high density under
alternative but low density under null.

e This choice will lead to the optimal test (largest 8) under
setting ©g = {0p} and ©1 = {01} (Neyman—Pearson lemma)

e It is not convenience to work on the n-dimensional space.
(For example, n-dim integral is needed to justify o require-
ment.) Therefore, instead of working on original data, we
work on summary statistics.
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Test Statistic|

A summary statistic T'(X1,...,Xn) € R, such that we define re-
ject region as R = {(x1,...,zn) : T(x1,...,xn) € C} for some set
CCR

e Let gy be the density of the test statistic 7', then

B(0) = Jc go(t)dt
e \We want a set C, such that

— when 6 € ©q, [ocgp(t)dt > 1 — a, i.e., C°is a high density
region of T

— when 0 € ©4, [-g9(t)dt is large, i.e., C is a high density
region of T

e A good T has different behavior under null and under alter-
native hypotheses.
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Designing test statistics

1. For simplicity, we want a 1" such that,

(i) if 6 € ©g, T tends to be small; if 8 € ©1, T tends to be
large. Then C = (¢, )

(ii) if 8 € ©g, T tends to around some fixed value; if 0 € ©1, T
tends to be larger or smaller than that fixed value. Then

C = [c1, 0]

2. In order to fulfill maxXgeo, Jocgo(t)dt < a, T  must have a
tractable distribution under null hypothesis. (We can bor-

row some idea from pivotal quantity)

3-12



p—valuel

Definition: Given a data set xzq,...,xn and observed test statistic
value t = T(x1,...,2n),

p-value = Hm%x Pr(T is more or equally rare than t|0 is true parameter)
€Oo

e \We need to define a region C; of “more rare than t”

-value = max/ t)dt
p jnax Ctge()

o Let C, be the rejection region under level «, then

a = max t)dt
Qeeofage( )

e We match C; with C,, i.e. define C; as Co fOr some « such
that C, barely contains t (i.e., t is on the boundary of Cy).

e p-value < a & t is inside Cq & Reject Hg
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One side : test

Observe Xq,...,Xn. Assume they come from a norm(u, 08) with
known o3 and unknown u.

©g = (—o0, ug] vs ©1 = (1o, o)

e Test statistics: X — ug (or vn(X — ug)/oo)

e ' tends to small under null, and tends to be large under
alternative.

o C = (Zcriticala OO)
o X —po~ N(p— po,o8/n)

& = MaX,<,, PT(N(,U — MO, 08/”) > Zcritical)
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= MaX, <, Pr(N (O, U%/”) > Zcritical — M+ o)

The maximum occurs when p takes its largest possible value,
l.e., a= P?“(N(O,Og/n) > Zcritical)

Zcritical — 0021—04/\/5

Rejection region: X — ug > 0g21—a/v/n Of V(X — pug) /oo >

2]l —«

p-value = max, <,  Pr(X —puop > = — pg) = Pr(N(O,a%/n) >
T — po)

= Pr(N(0,12) > /n(Z — po)/o0)
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Two side > test

Observe X1q,...,Xn. Assume they come from a norm(u, 08) with
known o3 and unknown .

@O — {:UJO} Vs ©1 = (_007/’1’0) U (/1'07 OO)

e Test statistics: X — ug (or vn(X — ug)/oo)

e I tends to be around O under null, and tends to away from
O under alternative.

o C = [2¢rit1, Zerit2]€
o X —po~ N(p— po,o8/n)

e a = Pr(N(O, Jg/n) > zerito) + Pr(IN (O, 08/”) < Zcrit1)
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A convenient choice a/2 = Pr(N(0,08/n) > 2¢it2)
a2 = P?“(N(O,Ug/n) < Zcrit1)

Zeritl = 002q/2/vV/M and zgrito = 0021 _q/2/V10

Rejection region: |X — ug| > 00z1_q/2/v/n OF v/n|X —pgl/og >
“l—a/2

Cq is Of the form [—a, a]€
p-value = Pr(X — pg > | — pol) + Pr(X — po < —|= — pol)

= 2Pr(N(0,12%) > /n(T — po)/o0)

3-17



'Two side test and confidence interval|

A general two side test ©g = {0p} vs ©1 = (—o0,0) U (6p, )

e If null hypothesis is true, Pr(6g ¢ C.1.) < «
e Denote R = {(x1,...,xn) : which yields a C.I. that contains 6y}

e Pr(0pg ¢ CI.|Hp is true) < a < Pr((Xq1,...,Xn) € R|Hg is true) <
8%

e R serves a valid reject region, although we have no guarantee
that is power function is large over ©;.

e If we have a good C.I., then we can reject null value if the
null value is inside the C.I.
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One side t test

Observe X1, ..., Xn. Assume they come from a norm(u,o?) with
unknown ¢2 and unknown .

o = {u < up}t vs ©1 = {u > uo}

e Test statistics: X — g

e however, its distribution is not tractable due to unknown o2

e Alternative choice /n(X — ug)/V.S?

e it tends to small under null, and tends to be large under
alternative.

o C = (tcriticala o)
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rewrite X; = u+ oZ; where Z; are iid standard normal r.v.’s,
then the test statistic can be represented as /n(cZ + pu —
1o)/\/o2S%, where S2 denotes the sample variance of Z;'s

= Max,<,, Pr(v/n(cZ + p — ,uo)/\/UQS% > teritical)

The maximum occurs when p takes its largest possible value,

e, a= PT(\/HZ/\/S% > teritical)

We can show that /nZ/ S% follows a t,,_1 distribution and

teritical = th—1,1—a

Rejection region: /n(X — po)/S > th—11-a

p-value = MaXx,<ugq PT(\/H(X — uo)/S = /n(T — po)/s) =
Pr(tp—1 > v/n(Z — po)/s)

Two-side t-test can be derived similarly.

3-20



two side y? test

Observe X1, ..., Xn. Assume they come from a norm(u,o?) with
unknown ¢2 and unknown .

O = {02 = 08} VS ©1 = {02 o= 08}

e Test statistics: S2

e Because SZ is consistent, T tends to be around o3 under null,
and tends to away from o3 under alternative

_ 2 2
o C= [XcritlﬂxcritQ]c

¢ S2~ x5 1/(n—1)

o = Pr(a%x%_l/(n—l) > Xgrit2)+P"“(08X%_1/(n_1) < Xgritl)
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A convenient choice a/2 = Pr(a%x%_l/(n —-1) > Xgritg)
a/2 = Progxi_1/(n—1) < x&it1)

2 2.2 2 2.2
Xcritl = JOXn—l,a/Q/(n_ 1) and Xgritp = onn—l,l—a/z/("_ 1)

Non-symmetric rejection region: (n —1)S2/02 < x2_, o/2 O

y
> Xn—1,1-a/2

p-value = 2 x P’I“(X,'%_l > (n — 1)32/08) or 2 x Pr(x%_l < (n —
1)s?/o3) depending which one is smaller.

One-side version can be derived similarly.
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Two sample t test

Observe X1,...,Xn, Y1,...,Ym Assume they come from norm(u1,c?)
and norm(us,0?) respectively, with unknown means and vari-
ances.

o = {p1 = p2} vs ©1 = {p1 7 p2}

e Test statistics: X — YV

e studentize it;:

(X =¥)//1/n+1/m
VI(n = 1)8% + (m — 1)S2]/(n +m — 2)

e it tends to be around 0O, and tends to away from O under
alternative.

o C = [tcritlatcritQ]C
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Under null hypothesis, the studentized statistic follows a

tn+m—o distribution.
a = Pr(t,tm—o > tcrite) + Pr(tn4m—2 <tcrit1)

teritl = tndm—2,a/2 ANd terit2 =t m—21-a/2

Rejection region: t-statistic > tp—1,1—a/2

p-value = Pr(t,,4,_2 > t-statistics of the observations)

Two side t-test can be derived similarly.
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Two sample F' test

Observe X1,...,Xp, Y1,..., Yy Assume they come from norm(u,0%)

and norm(uo,03) respectively, with unknown means and vari-
ances.

O = {0% < 02} VS ©1 = {01 > 02}

e Test statistics: S%/S2

e it tends to be smaller than 1, and tends to be larger than 1
under alternative.

o C = (Firit1, )

¢ (S)z(/a )/(S /U ) ~ Fp_ 1,m—1
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@ = MaXg, PT(S)Q(/S}Q/ > Feritical) = MaXg, PT((U%/Ug)Fn—l,m—l >
Fcritical)

The maximum occurs when (0%/05) takes its largest possible
value, i.e., a = Pr(F,—1.m—1 > Fritical)

Feritical = Fn—1m—1,1—a

Rejection region: S%2/S2 > F, 1 m-11-a

p-value = maxg, Pr(S)Q(/S% > s%/s%) = Pr(Fp—1m-1 2> S%/S%)

Two-side F-test can be derived similarly.
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Approximate Testing |

In many complicated problem, it is difficult to find an exactly
tractable test statistic. Thus, certain approximation can be used,
e.g., via CLT type approximation

Approximate z-test

Observe Xq,...,Xy € {0,1}. Assume they come from a Bernoulli(p)
distribution

Oo=1{p <po} Vs ©1 =1{p > po}

e test statistic: X

e ' tends to small under null, and tends to be large under
alternative.

o C = (Zcriticala OO)
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X ~ Bin(n,p)/n
o = maxpgpo PT(an(nap) > nzCFitiCEﬂ)

The maximum occurs when p takes its largest possible value

Bin(n,pg) ~ N(npg,npo(1l —pg)) by CLT, thus z¢riticas = po +
21—ay/Po(1 — po)/n

Rejection region: /n(X —po)/\/po(l —Po) > Z1—q

p-value = max,<,. Pr(X > z) = Pr(N(npg,npo(1—pg)) > nx)
P>=P0

= Pr(N(0,1%) > v/n(z — po)/\/po(1 — po))



Wald Test

Observe Xq,...,Xn. Assume they come from a distribution fy
with unknown 6.

O = {0 = 6o} vs ©1 = {0 7 0o}

e Let § be the MLE estimation

o /(0 — 6%) ~ N(0,72(6%))

e Test statistic: /n(0 — 0g)/7(0p)

e C = [Zcrit1, Zcrital® With zerit1 = 242 and zerita = 21_q/2

e Rejection region: /n|f — 0o|/7(0)| > 2142

e p-value = 2Pr(N(0,12) > /n(6 —6y)/7(0p))
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The goodness of fit y2 test

Assume that Pr(OQutcome i) = p;, 1 = 1, ...,k with unknown p; >
O and > p; = 1.

We observe n experiments, and the :th outcome occurs O; times.
©o = {p; = p;0 for all i}, ©1 = ©§

e Test statistic ¥ _{[(O; — E;)?/E;] where E; = np; ¢

e T tends to small under null (since O, ~ E;), and tends to be
large under alternative.

— (12
* C = (X¢ritical» )
e Under Hy, T = X%—l' Thus reject region is Xgriticm = x%_l 1—a

e p-value = Pr(x7_, > observed test statistic)
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T he likelihood ratio test

Observe Xq,...,Xn. Assume they come from a distribution fy
with unknown 6.

o Test statistics —2log(maxgco, I1fo(X;)/ Maxgeo I1 fo(X:))

e I tends to small under null , and tends to be large under
alternative.

—_ 2
o C= (XcriticaI’ o)

e For any 0 € ©g, T ~ x3, where d is the dimension difference
between ©g and ©.

e reject region is X%ritical = Xg,l_a

e p-value = Pr(x4 > observed test statistic)
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Sample Size Determination|

We already pick a test procedure and an o.

We want to khow how large the sample size needs to be,
such that we a reasonably large 8 over the whole @1.

This is actually impossible when © is a continuous connected
set.

Large enough n, such that 6(0) is larger than a desired level
(say 0.8) over &1 C ©7, where &1 C ©;7 represents the
parameter values that are practically significant

Let us try an example for one side z test
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‘Controversy |

Consider the following statistical modeling with © = {0, 1} with
a discrete data generation:

PMF | X=1 | X=2 | X=3
6=0| 0.95 | 0.04 | 0.01
6=1|0.099| 0.9 |0.001

Given a data point, and we want to test ©g = {0} vs ©1 = {1}
under a = 0.05

There are only 8 possible reject region, and the best one is
R = {2,3} (why?)

T herefore, if we observe X = 3, we reject null hypothesis. How-
ever, when X = 3, § = 0 is more likely than 8§ =1, i.e., (0.01 vs
0.001)
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Chapter Reviewl

Hypothesis Testing
Idea and formulation
Power function

Test statistics
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