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Beyond quantitative inferences

• Point/Interval estimations give a precise numerical argument

about the parameters

• In many cases, instead of knowing the exact values, we want

to know the trend, especially in a preliminary study.

• Is it better? vs how much better?

• A researcher thinks that if knee surgery patients go to phys-

ical therapy twice a week (instead of 3 times), their recovery

period will be longer. Average recovery times for knee surgery

patients (if they go to therapy 3 times a week ) is 8.2 weeks.

• (mean of recovery times ≤ 8.2 weeks) versus (mean of re-

covery times > 8.2 weeks)
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Hypothesis

Hypothesis: A hypothesis is a statement about the true distri-

bution or eqivalently, a statement about the true parameter.

Math form of a hypothesis: θ ∈ Θ0 where Θ0 ⊂ Θ.

Example

• Normal(µ, σ2) modeling. The mean of the distribution is

greater than 2: Θ0 = (2,∞)⊗ (0,∞)

• Bernoulli(p) modeling. The variance of the distribution is

smaller or equal to 0.04: Θ0 = {p : p(1−p) ≤ 0.04,0 ≤ p ≤ 1}

• Exponential(λ) modeling. The probability of the distribu-

tion being greater than 10 is smaller than 0.01: Θ0 = {λ :

exp(−10λ) < 0.01}
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Hypothesis Testing

Given a data set, we decide whehter θ ∈ Θ0 or not?

Let Θ1 = Θc
0, then it is equivalent to θ ∈ Θ0 versus θ ∈ Θ1.

Hypothesis Testing: Null vs Alternative Hypothesis

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

We need to design a decision making process (accept H0 or

accept H1) based on the observations.
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Reject Region

Decision making process can be view as a mapping from data to

{0,1}, i.e. ψ : Xn → {0,1}

• Reject Region, a subset of Xn, R = {data : ψ(data) = 1}.
All the possible data values that lead to the acceptance of

H1.

• Example: if R = Rn, then we always accept H1.

• There are, of course, infinite choices of R. The question will

be, how to evaluate a given R?

• A straightforward way is to examine whether R can give you

a correct decision
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Power function

• Given any θ ∈ Θ, we define power function

β(θ) := Pr(ψ(data) = 1) = Pr((X1, . . . , Xn) ∈ R)

=
∫
R

∏n
i=1 fθ(xi)dx1 . . . dxn

• The chance to make a correction decision should be high,

thus

i When θ ∈ Θ0, we want a small β(θ). Small chance of Type

I error

ii When θ ∈ Θ1, we want a large β(θ). Small chance of Type

II error
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Trade-off

• small β(θ) for θ ∈ Θ0 implicitly wants a small set R

• big β(θ) for θ ∈ Θ1 implicitly wants a large set R

• There is a trade-off between two goals and we need a strategy

to make the balance

• The common strategy of statistical hypothesis testing

– For any θ ∈ Θ0, β(θ) ≤ α for some fixed small α i.e.,

maxθ∈Θ0
β(θ) ≤ α.

– While the probability of committing type I error bounded,

we try to minimize the probability of type II error.
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Meaning of small α

• Pr((X1 . . . , Xn) ∈ R)) ≤ α means that R represents the set

of rare or extreme cases under θ ∈ Θ0

• We reject H0, only when the data we observed is a rare case

for θ ∈ Θ0. That is, there looks like a strong contradiction

between observations and null hypothesis.

• Small α means our strategy is: we are reluctant to reject H0

unless data are not compatible with null hypothesis

• Alternative interpretation: H0 is our prior belief, if unneces-

sary, we will continue believing in it.

• In practice, we put default or previous knowledge as null

hypothesis.
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Meaning of large β values over Θ1

A good test tries maximize β(θ) over Θ1. If we indeed make it,

then

• Pr((X1 . . . , Xn) ∈ R)) is non-small means that R represents

the set of possible or common cases under θ ∈ Θ1

• When we reject H0, the data looks like a regular case for θ ∈
Θ1. That is, data are compatible with alternative hypothesis

In conclusion, a good test rejects H0 when data are clearly not

compatible with null hypothesis, but reasonably compatible with

alternative hypothesis
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Examples

• A bad test:

We want to test the biological sex of a person, male vs

female.

reject region: the person has natural green hair.

• A good test:

A fair criminal adjudication

A presumption of innocence, or the suspect is innocent until

proven guilty.
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How to find a good R?

• Intuitively, we can examine the density
∏n
i=1 fθ(xi). R should

somehow include (x1, . . . , xn)’s that have high density under

alternative but low density under null.

• This choice will lead to the optimal test (largest β) under

setting Θ0 = {θ0} and Θ1 = {θ1} (Neyman–Pearson lemma)

• It is not convenience to work on the n-dimensional space.

(For example, n-dim integral is needed to justify α require-

ment.) Therefore, instead of working on original data, we

work on summary statistics.
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Test Statistic

A summary statistic T (X1, . . . , Xn) ∈ R, such that we define re-

ject region as R = {(x1, . . . , xn) : T (x1, . . . , xn) ∈ C} for some set

C ⊂ R

• Let gθ be the density of the test statistic T , then

β(θ) =
∫
C gθ(t)dt

• We want a set C, such that

– when θ ∈ Θ0,
∫
Cc gθ(t)dt ≥ 1 − α, i.e., Cc is a high density

region of T

– when θ ∈ Θ1,
∫
C gθ(t)dt is large, i.e., C is a high density

region of T

• A good T has different behavior under null and under alter-

native hypotheses.
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Designing test statistics

1. For simplicity, we want a T such that,

(i) if θ ∈ Θ0, T tends to be small; if θ ∈ Θ1, T tends to be

large. Then C = (c,∞)

(ii) if θ ∈ Θ0, T tends to around some fixed value; if θ ∈ Θ1, T

tends to be larger or smaller than that fixed value. Then

C = [c1, c2]
c

2. In order to fulfill maxθ∈Θ0

∫
C gθ(t)dt ≤ α, T must have a

tractable distribution under null hypothesis. (We can bor-

row some idea from pivotal quantity)
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p-value

Definition: Given a data set x1, . . . , xn and observed test statistic

value t = T (x1, . . . , xn),

p-value = max
θ∈Θ0

Pr(T is more or equally rare than t|θ is true parameter)

• We need to define a region Ct of “more rare than t”

p-value = max
θ∈Θ0

∫
Ct
gθ(t)dt

• Let Cα be the rejection region under level α, then

α = max
θ∈Θ0

∫
Cα
gθ(t)dt

• We match Ct with Cα, i.e. define Ct as Cα for some α such

that Cα barely contains t (i.e., t is on the boundary of Cα).

• p-value < α ⇔ t is inside Cα ⇔ Reject H0
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One side z test

Observe X1, . . . , Xn. Assume they come from a norm(µ, σ20) with

known σ20 and unknown µ.

Θ0 = (−∞, µ0] vs Θ1 = (µ0,∞)

• Test statistics: X̄ − µ0 (or
√
n(X̄ − µ0)/σ0)

• T tends to small under null, and tends to be large under

alternative.

• C = (zcritical,∞)

• X̄ − µ0 ∼ N(µ− µ0, σ
2
0/n)

• α = maxµ≤µ0 Pr(N(µ− µ0, σ
2
0/n) > zcritical)
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• α = maxµ≤µ0 Pr(N(0, σ20/n) > zcritical − µ+ µ0)

• The maximum occurs when µ takes its largest possible value,

i.e., α = Pr(N(0, σ20/n) > zcritical)

• zcritical = σ0z1−α/
√
n

• Rejection region: X̄ − µ0 > σ0z1−α/
√
n or

√
n(X̄ − µ0)/σ0 >

z1−α

• p-value = maxµ≤µ0 Pr(X̄ − µ0 ≥ x̄ − µ0) = Pr(N(0, σ20/n) ≥
x̄− µ0)

= Pr(N(0,12) ≥
√
n(x̄− µ0)/σ0)
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Two side z test

Observe X1, . . . , Xn. Assume they come from a norm(µ, σ20) with

known σ20 and unknown µ.

Θ0 = {µ0} vs Θ1 = (−∞, µ0) ∪ (µ0,∞)

• Test statistics: X̄ − µ0 (or
√
n(X̄ − µ0)/σ0)

• T tends to be around 0 under null, and tends to away from

0 under alternative.

• C = [zcrit1, zcrit2]
c

• X̄ − µ0 ∼ N(µ− µ0, σ
2
0/n)

• α = Pr(N(0, σ20/n) > zcrit2) + Pr(N(0, σ20/n) < zcrit1)
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• A convenient choice α/2 = Pr(N(0, σ20/n) > zcrit2)

α/2 = Pr(N(0, σ20/n) < zcrit1)

• zcrit1 = σ0zα/2/
√
n and zcrit2 = σ0z1−α/2/

√
n

• Rejection region: |X̄−µ0| > σ0z1−α/2/
√
n or

√
n|X̄−µ0|/σ0 >

z1−α/2

• Cα is of the form [−a, a]c

• p-value = Pr(X̄ − µ0 ≥ |x̄− µ0|) + Pr(X̄ − µ0 ≤ −|x̄− µ0|)

= 2Pr(N(0,12) ≥
√
n(x̄− µ0)/σ0)
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Two side test and confidence interval

A general two side test Θ0 = {θ0} vs Θ1 = (−∞, θ0) ∪ (θ0,∞)

• If null hypothesis is true, Pr(θ0 /∈ C.I.) ≤ α

• Denote R = {(x1, . . . , xn) : which yields a C.I. that contains θ0}

• Pr(θ0 /∈ C.I.|H0 is true) ≤ α⇔ Pr((X1, . . . , Xn) ∈ R|H0 is true) ≤
α

• R serves a valid reject region, although we have no guarantee

that is power function is large over Θ1.

• If we have a good C.I., then we can reject null value if the

null value is inside the C.I.
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One side t test

Observe X1, . . . , Xn. Assume they come from a norm(µ, σ2) with

unknown σ2 and unknown µ.

Θ0 = {µ ≤ µ0} vs Θ1 = {µ > µ0}

• Test statistics: X̄ − µ0

• however, its distribution is not tractable due to unknown σ2

• Alternative choice
√
n(X̄ − µ0)/

√
S2

• it tends to small under null, and tends to be large under

alternative.

• C = (tcritical,∞)
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• rewrite Xi = µ+ σZi where Zi are iid standard normal r.v.’s,

then the test statistic can be represented as
√
n(σZ̄ + µ −

µ0)/
√
σ2S2

Z, where S2
Z denotes the sample variance of Zi’s

• α = maxµ≤µ0 Pr(
√
n(σZ̄ + µ− µ0)/

√
σ2S2

Z > tcritical)

• The maximum occurs when µ takes its largest possible value,

i.e., α = Pr(
√
nZ̄/

√
S2
Z > tcritical)

• We can show that
√
nZ̄/

√
S2
Z follows a tn−1 distribution and

tcritical = tn−1,1−α

• Rejection region:
√
n(X̄ − µ0)/S > tn−1,1−α

• p-value = maxµ≤µ0 Pr(
√
n(X̄ − µ0)/S ≥

√
n(x̄ − µ0)/s) =

Pr(tn−1 ≥
√
n(x̄− µ0)/s)

• Two-side t-test can be derived similarly.
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two side χ2 test

Observe X1, . . . , Xn. Assume they come from a norm(µ, σ2) with

unknown σ2 and unknown µ.

Θ0 = {σ2 = σ20} vs Θ1 = {σ2 ̸= σ20}

• Test statistics: S2

• Because S2 is consistent, T tends to be around σ20 under null,

and tends to away from σ20 under alternative

• C = [χ2crit1, χ
2
crit2]

c

• S2 ∼ σ2χ2n−1/(n− 1)

• α = Pr(σ20χ
2
n−1/(n−1) > χ2crit2)+Pr(σ20χ

2
n−1/(n−1) < χ2crit1)
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• A convenient choice α/2 = Pr(σ20χ
2
n−1/(n− 1) > χ2crit2)

α/2 = Pr(σ20χ
2
n−1/(n− 1) < χ2crit1)

• χ2crit1 = σ20χ
2
n−1,α/2/(n−1) and χ2crit2 = σ20χ

2
n−1,1−α/2/(n−1)

• Non-symmetric rejection region: (n − 1)S2/σ20 < χ2n−1,α/2 or

> χ2n−1,1−α/2

• p-value = 2 ∗ Pr(χ2n−1 ≥ (n− 1)s2/σ20) or 2 ∗ Pr(χ2n−1 ≤ (n−
1)s2/σ20) depending which one is smaller.

• One-side version can be derived similarly.
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Two sample t test

Observe X1, . . . , Xn, Y1, . . . , Ym Assume they come from norm(µ1, σ
2)

and norm(µ2, σ
2) respectively, with unknown means and vari-

ances.

Θ0 = {µ1 = µ2} vs Θ1 = {µ1 ̸= µ2}

• Test statistics: X̄ − Ȳ

• studentize it:

(X̄ − Ȳ )/
√
1/n+1/m√

[(n− 1)S2
X + (m− 1)S2

Y ]/(n+m− 2)

• it tends to be around 0, and tends to away from 0 under

alternative.

• C = [tcrit1, tcrit2]
c
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• Under null hypothesis, the studentized statistic follows a

tn+m−2 distribution.

• α = Pr(tn+m−2 > tcrit2) + Pr(tn+m−2 < tcrit1)

• tcrit1 = tn+m−2,α/2 and tcrit2 = tn+m−2,1−α/2

• Rejection region: t-statistic > tn−1,1−α/2

• p-value = Pr(tn+m−2 ≥ t-statistics of the observations)

• Two side t-test can be derived similarly.

3-24



Two sample F test

Observe X1, . . . , Xn, Y1, . . . , Ym Assume they come from norm(µ1, σ
2
1)

and norm(µ2, σ
2
2) respectively, with unknown means and vari-

ances.

Θ0 = {σ21 ≤ σ22} vs Θ1 = {σ21 > σ22}

• Test statistics: S2
X/S

2
Y

• it tends to be smaller than 1, and tends to be larger than 1

under alternative.

• C = (Fcrit1,∞)

• (S2
X/σ

2
1)/(S

2
Y /σ

2
2) ∼ Fn−1,m−1
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• α = maxΘ0
Pr(S2

X/S
2
Y > Fcritical) = maxΘ0

Pr((σ21/σ
2
2)Fn−1,m−1 >

Fcritical)

• The maximum occurs when (σ21/σ
2
2) takes its largest possible

value, i.e., α = Pr(Fn−1,m−1 > Fcritical)

• Fcritical = Fn−1,m−1,1−α

• Rejection region: S2
X/S

2
Y > Fn−1,m−1,1−α

• p-value = maxΘ0
Pr(S2

X/S
2
Y ≥ s2X/s

2
Y ) = Pr(Fn−1,m−1 ≥ s2X/s

2
Y )

• Two-side F -test can be derived similarly.
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Approximate Testing

In many complicated problem, it is difficult to find an exactly

tractable test statistic. Thus, certain approximation can be used,

e.g., via CLT type approximation

Approximate z-test

Observe X1, . . . , Xn ∈ {0,1}. Assume they come from a Bernoulli(p)

distribution

Θ0 = {p ≤ p0} vs Θ1 = {p > p0}

• test statistic: X̄

• T tends to small under null, and tends to be large under

alternative.

• C = (zcritical,∞)
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• X̄ ∼ Bin(n, p)/n

• α = maxp≤p0 Pr(Bin(n, p) > nzcritical)

• The maximum occurs when p takes its largest possible value

(why?), i.e., α = Pr(Bin(n, p0) > nzcritical)

• Bin(n, p0) ≈ N(np0, np0(1− p0)) by CLT, thus zcritical = p0+

z1−α
√
p0(1− p0)/n

• Rejection region:
√
n(X̄ − p0)/

√
p0(1− p0) > z1−α

• p-value = maxp≤p0 Pr(X̄ ≥ x̄) = Pr(N(np0, np0(1−p0)) ≥ nx̄)

= Pr(N(0,12) ≥
√
n(x̄− p0)/

√
p0(1− p0))



Wald Test

Observe X1, . . . , Xn. Assume they come from a distribution fθ
with unknown θ.

Θ0 = {θ = θ0} vs Θ1 = {θ ̸= θ0}

• Let θ̂ be the MLE estimation

•
√
n(θ̂ − θ∗) ≈ N(0, τ2(θ∗))

• Test statistic:
√
n(θ̂ − θ0)/τ(θ0)

• C = [zcrit1, zcrit2]
c with zcrit1 = zα/2 and zcrit2 = z1−α/2

• Rejection region:
√
n|θ̂ − θ0|/τ(θ0)| > z1−α/2

• p-value = 2Pr(N(0,12) ≥
√
n(θ̂ − θ0)/τ(θ0))
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The goodness of fit χ2 test

Assume that Pr(Outcome i) = pi, i = 1, ..., k with unknown pi ≥
0 and

∑
pi = 1.

We observe n experiments, and the ith outcome occurs Oi times.

Θ0 = {pi = pi,0 for all i}, Θ1 = Θc
0

• Test statistic
∑k
i=1[(Oi − Ei)

2/Ei] where Ei = npi,0

• T tends to small under null (since Oi ≈ Ei), and tends to be

large under alternative.

• C = (χ2critical,∞)

• Under H0, T ≈ χ2k−1. Thus reject region is χ2critical = χ2k−1,1−α

• p-value = Pr(χ2k−1 ≥ observed test statistic)
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The likelihood ratio test

Observe X1, . . . , Xn. Assume they come from a distribution fθ
with unknown θ.

• Test statistics −2 log(maxθ∈Θ0

∏
fθ(Xi)/maxθ∈Θ

∏
fθ(Xi))

• T tends to small under null , and tends to be large under

alternative.

• C = (χ2critical,∞)

• For any θ ∈ Θ0, T ∼ χ2d, where d is the dimension difference

between Θ0 and Θ.

• reject region is χ2critical = χ2d,1−α

• p-value = Pr(χ2d ≥ observed test statistic)
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Sample Size Determination

• We already pick a test procedure and an α.

• We want to khow how large the sample size needs to be,

such that we a reasonably large β over the whole Θ1.

• This is actually impossible when Θ is a continuous connected

set.

• Large enough n, such that θ(θ) is larger than a desired level

(say 0.8) over Θ̃1 ⊂ Θ1, where Θ̃1 ⊂ Θ1 represents the

parameter values that are practically significant

• Let us try an example for one side z test
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Controversy

Consider the following statistical modeling with Θ = {0,1} with

a discrete data generation:

PMF X=1 X=2 X=3
θ = 0 0.95 0.04 0.01
θ = 1 0.099 0.9 0.001

Given a data point, and we want to test Θ0 = {0} vs Θ1 = {1}
under α = 0.05

There are only 8 possible reject region, and the best one is

R = {2,3} (why?)

Therefore, if we observe X = 3, we reject null hypothesis. How-

ever, when X = 3, θ = 0 is more likely than θ = 1, i.e., (0.01 vs

0.001)
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Chapter Review

• Hypothesis Testing

• Idea and formulation

• Power function

• Test statistics
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